八年级数学全等三角形复习题及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

初二数学全等三角形综合复习切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。1.如图,在ABC中,BE是∠ABC的平分线,ADBE,垂足为D。求证:21C。2.如图,在ABC中,ABBC,90ABC。F为AB延长线上一点,点E在BC上,BEBF,连接,AEEF和CF。求证:AECF。3.如图,,APCP分别是ABC外角MAC和NCA的平分线,它们交于点P。求证:BP为MBN的平分线。5.如图,在ABC中,ABAC,12,P为AD上任意一点。求证:ABACPBPC。一、选择题:2.根据下列条件,能画出唯一ABC的是()A.3AB,4BC,8CAB.4AB,3BC,30AC.60C,45B,4ABD.90C,6AB3.如图,已知12,ACAD,增加下列条件:①ABAE;②BCED;③CD;④BE。其中能使ABCAED的条件有()A.4个B.3个C.2个D.1个4.如图,12,CD,,ACBD交于E点,下列不正确的是()A.DAECBEB.CEDEC.DEA不全等于CBED.EAB是等腰三角形5.如图,已知ABCD,BCAD,23B,则D等于()A.67B.46C.23D.无法确定二、填空题:6.如图,在ABC中,90C,ABC的平分线BD交AC于点D,且:2:3CDAD,10ACcm,则点D到AB的距离等于__________cm;7.如图,已知ABDC,ADBC,,EF是BD上的两点,且BEDF,若100AEB,30ADB,则BCF____________;8.将一张正方形纸片按如图的方式折叠,,BCBD为折痕,则CBD的大小为_________;9.如图,在等腰RtABC中,90C,ACBC,AD平分BAC交BC于D,DEAB于E,若10AB,则BDE的周长等于____________;10.如图,点,,,DEFB在同一条直线上,AB//CD,AE//CF,且AECF,若10BD,2BF,则EF___________;三、解答题:11.如图,ABC为等边三角形,点,MN分别在,BCAC上,且BMCN,AM与BN交于Q点。求AQN的度数。12.如图,90ACB,ACBC,D为AB上一点,AECD,BFCD,交CD延长线于F点。求证:BFCE。答案例1.思路分析:从结论ACFBDE入手,全等条件只有ACBD;由AEBF两边同时减去EF得到AFBE,又得到一个全等条件。还缺少一个全等条件,可以是CFDE,也可以是AB。由条件ACCE,BDDF可得90ACEBDF,再加上AEBF,ACBD,可以证明ACEBDF,从而得到AB。解答过程:ACCE,BDDF90ACEBDF在RtACE与RtBDF中AEBFACBD∴RtACERtBDF(HL)ABAEBFAEEFBFEF,即AFBE在ACF与BDE中AFBEABACBDACFBDE(SAS)解题后的思考:本题的分析方法实际上是“两头凑”的思想方法:一方面从问题或结论入手,看还需要什么条件;另一方面从条件入手,看可以得出什么结论。再对比“所需条件”和“得出结论”之间是否吻合或具有明显的联系,从而得出解题思路。小结:本题不仅告诉我们如何去寻找全等三角形及其全等条件,而且告诉我们如何去分析一个题目,得出解题思路。例2.思路分析:直接证明21C比较困难,我们可以间接证明,即找到,证明2且1C。也可以看成将2“转移”到。那么在哪里呢?角的对称性提示我们将AD延长交BC于F,则构造了△FBD,可以通过证明三角形全等来证明∠2=∠DFB,可以由三角形外角定理得∠DFB=∠1+∠C。解答过程:延长AD交BC于F在ABD与FBD中90ABDFBDBDBDADBFDBABDFBD(ASA2DFB又1DFBC21C。解题后的思考:由于角是轴对称图形,所以我们可以利用翻折来构造或发现全等三角形。例3.思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形。以线段AE为边的ABE绕点B顺时针旋转90到CBF的位置,而线段CF正好是CBF的边,故只要证明它们全等即可。解答过程:90ABC,F为AB延长线上一点90ABCCBF在ABE与CBF中ABBCABCCBFBEBFABECBF(SAS)AECF。解题后的思考:利用旋转的观点,不但有利于寻找全等三角形,而且有利于找对应边和对应角。小结:利用三角形全等证明线段或角相等是重要的方法,但有时不容易找到需证明的三角形。这时我们就可以根据需要利用平移、翻折和旋转等图形变换的观点来寻找或利用辅助线构造全等三角形。例4.思路分析:关于四边形我们知之甚少,通过连接四边形的对角线,可以把原问题转化为全等三角形的问题。解答过程:连接ACAB//CD,AD//BC12,34在ABC与CDA中1243ACCAABCCDA(ASA)ABCD。解题后的思考:连接四边形的对角线,是构造全等三角形的常用方法。例5.思路分析:要证明“BP为MBN的平分线”,可以利用点P到,BMBN的距离相等来证明,故应过点P向,BMBN作垂线;另一方面,为了利用已知条件“,APCP分别是MAC和NCA的平分线”,也需要作出点P到两外角两边的距离。解答过程:过P作PDBM于D,PEAC于E,PFBN于FAP平分MAC,PDBM于D,PEAC于EPDPECP平分NCA,PEAC于E,PFBN于FPEPFPDPE,PEPFPDPFPDPF,且PDBM于D,PFBN于FBP为MBN的平分线。解题后的思考:题目已知中有角平分线的条件,或者有要证明角平分线的结论时,常过角平分线上的一点向角的两边作垂线,利用角平分线的性质或判定来解答问题。例6.思路分析:要证明“2ACAE”,不妨构造出一条等于2AE的线段,然后证其等于AC。因此,延长AE至F,使EFAE。解答过程:延长AE至点F,使EFAE,连接DF在ABE与FDE中AEFEAEBFEDBEDEABEFDE(SAS)BEDFADFADBEDF,ADCBADB又ADBBADADFADCABDF,ABCDDFDC在ADF与ADC中ADADADFADCDFDCADFADC(SAS)AFAC又2AFAE2ACAE。解题后的思考:三角形中倍长中线,可以构造全等三角形,继而得出一些线段和角相等,甚至可以证明两条直线平行。例7.思路分析:欲证ABACPBPC,不难想到利用三角形中三边的不等关系来证明。由于结论中是差,故用两边之差小于第三边来证明,从而想到构造线段ABAC。而构造ABAC可以采用“截长”和“补短”两种方法。解答过程:法一:在AB上截取ANAC,连接PN在APN与APC中12ANACAPAPAPNAPC(SAS)PNPC在BPN中,PBPNBNPBPCABAC,即AB-ACPB-PC。法二:延长AC至M,使AMAB,连接PM在ABP与AMP中12ABAMAPAPABPAMP(SAS)PBPM在PCM中,CMPMPCABACPBPC。解题后的思考:当已知或求证中涉及线段的和或差时,一般采用“截长补短”法。具体作法是:在较长的线段上截取一条线段等于一条较短线段,再设法证明较长线段的剩余线段等于另外的较短线段,称为“截长”;或者将一条较短线段延长,使其等于另外的较短线段,然后证明这两条线段之和等于较长线段,称为“补短”。小结:本题组总结了本章中常用辅助线的作法,以后随着学习的深入还要继续总结。我们不光要总结辅助线的作法,还要知道辅助线为什么要这样作,这样作有什么用处。同步练习的答案一、选择题:1.A2.C3.B4.C5.C二、填空题:6.47.708.909.1010.6三、解答题:11.解:ABC为等边三角形ABBC,60ABCC在ABM与BCN中ABBCABCCBMCNABMBCN(SAS)NBCBAM60AQNABQBAMABQNBC。12.证明:AECD,BFCD90FAEC90ACECAE90ACB90ACEBCFCAEBCF在ACE与CBF中FAECCAEBCFACBCACECBF(AAS)BFCE。

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功