2013年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)(2013•江苏)函数y=3sin(2x+)的最小正周期为_________.2.(5分)(2013•江苏)设z=(2﹣i)2(i为虚数单位),则复数z的模为_________.3.(5分)(2013•江苏)双曲线的两条渐近线方程为_________.4.(5分)(2013•江苏)集合{﹣1,0,1}共有_________个子集.5.(5分)(2013•江苏)如图是一个算法的流程图,则输出的n的值是_________.6.(5分)(2013•江苏)抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:运动员第一次第二次第三次第四次第五次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为_________.7.(5分)(2013•江苏)现在某类病毒记作XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为_________.8.(5分)(2013•江苏)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=_________.菁优网©2010-2014菁优网9.(5分)(2013•江苏)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是_________.10.(5分)(2013•江苏)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为_________.11.(5分)(2013•江苏)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x的解集用区间表示为_________.12.(5分)(2013•江苏)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d1,F到l的距离为d2,若d2=,则椭圆C的离心率为_________.13.(5分)(2013•江苏)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为_________.14.(5分)(2013•江苏)在正项等比数列{an}中,,a6+a7=3,则满足a1+a2+…+an>a1a2…an的最大正整数n的值为_________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2013•江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.16.(14分)(2013•江苏)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.菁优网©2010-2014菁优网17.(14分)(2013•江苏)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.18.(16分)(2013•江苏)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(16分)(2013•江苏)设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:(k,n∈N*);(2)若{bn}是等差数列,证明:c=0.20.(16分)(2013•江苏)设函数f(x)=lnx﹣ax,g(x)=ex﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.菁优网©2010-2014菁优网2013年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC。求证:AC=2AD。B.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵1012,0206AB,求矩阵1AB.C.[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xoy中,直线l的参数方程为12xtyt(t为参数),曲线C的参数方程为22tan2tanxy(为参数)。试求直线l和曲线C的普通方程,并求出它们的公共点的坐标。D.[选修4-5:不等式选讲](本小题满分10分)已知a≥b>0,求证:332ab≥222abab。【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在直三棱柱111ABCABC中,AB⊥AC,AB=AC=2,1AA=4,点D是BC的中点。(1)求异面直线1AB与1CD所成角的余弦值;(2)求平面1ADC与平面1ABA所成二面角的正弦值。注意事项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共2页,均为非选择题(第21题~第23题)。本卷满分为40分。考试时间为30分钟。考试结束后,请将本试卷和答题卡一并交回。2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效。5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。菁优网©2010-2014菁优网23.(本小题满分10分)设数列na:1,-2,-2,3,3,3,-4,-4,-4,-4,…,11(1),(1)kkkkk个,…即当()22nkN(k-1)k(k+1)k时,1(1)knak。记12nnSaaa()nN。对于lN,定义集合lP=﹛n|nS为na的整数倍,,nN且1≤n≤l}(1)求11P中元素个数;(2)求集合2000P中元素个数。菁优网©2010-2014菁优网2013年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)(2013•江苏)函数y=3sin(2x+)的最小正周期为π.考点:三角函数的周期性及其求法.4664233专题:计算题;三角函数的图像与性质.分析:将题中的函数表达式与函数y=Asin(ωx+φ)进行对照,可得ω=2,由此结合三角函数的周期公式加以计算,即可得到函数的最小正周期.解答:解:∵函数表达式为y=3sin(2x+),∴ω=2,可得最小正周期T=||=||=π故答案为:π点评:本题给出三角函数表达式,求函数的最小正周期,着重考查了函数y=Asin(ωx+φ)的周期公式的知识,属于基础题.2.(5分)(2013•江苏)设z=(2﹣i)2(i为虚数单位),则复数z的模为5.考点:复数代数形式的混合运算.4664233专题:计算题.分析:把给出的复数展开化为a+bi(a,b∈R)的形式,然后直接利用莫得公式计算.解答:解:z=(2﹣i)2=4﹣4i+i2=3﹣4i.所以,|z|==5.故答案为5.点评:本题考查了复数代数形式的混合运算,考查了复数莫得求法,是基础题.3.(5分)(2013•江苏)双曲线的两条渐近线方程为.考点:双曲线的简单性质.4664233专题:计算题;圆锥曲线的定义、性质与方程.分析:先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.解答:解:∵双曲线的a=4,b=3,焦点在x轴上而双曲线的渐近线方程为y=±x菁优网©2010-2014菁优网∴双曲线的渐近线方程为故答案为:点评:本题考查了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想4.(5分)(2013•江苏)集合{﹣1,0,1}共有8个子集.考点:子集与真子集.4664233专题:计算题.分析:集合P={1,2,3}的子集是指属于集合的部分或所有元素组成的集合,包括空集.解答:解:因为集合{﹣1,0,1},所以集合{﹣1,0,1}的子集有:{﹣1},{0},{1},{﹣1,0},{﹣1,1},{0,1},{﹣1,0,1},∅,共8个.故答案为:8.点评:本题考查集合的子集个数问题,对于集合M的子集问题一般来说,若M中有n个元素,则集合M的子集共有2n个.5.(5分)(2013•江苏)如图是一个算法的流程图,则输出的n的值是3.考点:程序框图.4664233专题:操作型.分析:由已知的程序框图可知,该程序的功能是利用循环计算a值,并输出满足a≥20的最小n值,模拟程序的运行过程可得答案.解答:解:当n=1,a=2时,满足进行循环的条件,执行循环后,a=8,n=2;当n=2,a=8时,满足进行循环的条件,执行循环后,a=26,n=3;当n=3,a=26时,不满足进行循环的条件,退出循环故输出n值为3故答案为:3点评:本题考查的知识点是程序框图,由于循环的次数不多,故可采用模拟程序运行的方法进行.菁优网©2010-2014菁优网6.(5分)(2013•江苏)抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:运动员第一次第二次第三次第四次第五次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为2.考点:极差、方差与标准差.4664233专题:计算题;图表型.分析:直接由图表得出两组数据,求出它们的平均数,求出方差,则答案可求.解答:解:由图表得到甲乙两位射击运动员的数据分别为:甲:87,91,90,89,93;乙:89,90,91,88,92;,.方差=4.=2.所以乙运动员的成绩较稳定,方差为2.故答案为2.点评:本题考查了方差与标准差,对于一组数据,在平均数相差不大的情况下,方差越小越稳定,考查最基本的知识点,是基础题.7.(5分)(2013•江苏)现在某类病毒记作XmYn,其中正整数m,n