《相交线、平行线》提高测试

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

华人教育有限公司版权所有提高测试(一)判断题(每题2分,共10分)1.过线段外一点画线段的中垂线……………………………………………………()【提示】线段外一点不一定在线段的中垂线上,所以过线段外一点画线段的垂线,不一定平分这条线段如图PQ⊥AB,垂足为O.但PQ不平分AB.【答案】×.2.如果两个角互为补角,那么它们的角平分线一定互相垂直……………………()【提示】两个角互为补角时,这两个角可以是邻补角,也可以不是邻补角.当两角互补但不是邻补角时,则它们的角平分线不互相垂直.如图:∠AOB与∠AOC互补,OM平分∠AOC、ON平分∠AOB.显然OM与ON不垂直.【答案】×.3.两条直线不平行,同旁内角不互补………………………………………………()【提示】如图,AB与CD不平行,EF与AB交于点G.与CD交于点H.过点G作PQ∥CD.∴∠QGF+∠GHD=180°.∵∠BGF<∠QGF,∴∠BGF+∠GHD<180°;又∠PGH+∠GHC=180°,∵∠AGH>∠PGH,∴∠AGH+∠GHC>180°.即两直线不平行,同旁内角不互补.【答案】√.4.错误地判断一件事情的语句不叫命题……………………………………………()华人教育有限公司版权所有【提示】判断一件事情的语句叫做命题.错误地判断得到的是假命题.假命题也是命题.【答案】×.5.如图,AB∥CD,那么∠B+∠F+∠D=∠E+∠G…………………………()【提示】过点E、F、G分别画EP∥AB,PQ∥AB,GM∥AB.则AB∥EP∥FQ∥GM∥CD.∴∠B=∠1,∠3=∠2,∠4=∠5,∠D=∠6.∴∠B+∠3+∠4+∠D=∠1+∠2+∠5+∠6.即∠B+∠EFG+∠D=∠BEF+∠FG(D)【答案】√.(二)填空题(每小题2分,共18分)6.如图,当∠1=∠时,AB∥DC;当∠D+∠=180°时,AB∥DC;当∠B=∠时,AB∥CD.【提示】把题中的“AB∥CD”视作条件去找∠1的内错角、∠D的同旁内角和∠B的同位角.即得要填的角.【答案】4,DAB,5.7.如图,AB∥CD,AD∥BC,∠B=60°,∠EDA=50°.则∠CDF=.【提示】由AB∥CD,得∠DCF=∠B=60°,华人教育有限公司版权所有由AD∥BC得∠ADC=∠DCF=60°,∴∠ADE+∠ADC=50°+60°=110°,∴∠CDF=180°-110°=70°.【答案】70°.8.如图,O是△ABC内一点,OD∥AB,OE∥BC,OF∥AC,∠B=45°,∠C=75°,则∠DOE=,∠EOF=,∠FOD=.【提示】由OD∥AB,∠B=45°,得∠ODC=∠B=45°.由OE∥DC,∠DOE+∠ODC=180°,∴∠DOE=180°-45°=135°.同理可求∠EOF=105°.由周角的定义可求∠FOD=120°.【答案】135°,105°,120°.9.两个角的两边分别平行,其中一个角比另一个角的3倍少20°.则这两个角的度数分别是.【提示】如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.设一个角为x度.则另一个角为(3x-20)度.依据上面的性质得,3x-20=x,或3x-20+x=180°.∴x=10,或x=50.当x=50时,3x-20=3×50-20=130.【答案】10°、10°或50°、130°.【点评】通过列方程(或方程组)解题是几何计算常用的方法.10.如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF=.【提示】由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°.于是可得关于∠B、∠D的方程组2496DBDB解得∠B=60°.华人教育有限公司版权所有由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=21∠BEF=30°.【答案】30°.11.如图,AD∥BC,点O在AD上,BO、CO分别平分∠ABC、∠DCB,若∠A+∠D=m°.则∠BOC=______.【提示】由AD∥BC,BO平分∠ABC,可知∠AOB=∠CBO=21∠ABC.同理∠DOC=∠BCO=21∠DCB.∵AD∥BC,∴∠A+∠ABC=180°,∠D+∠DCB=180°,∴∠A+∠D+∠ABC+∠DCB=360°.∵∠A+∠D=m°,∴∠ABC+∠DCB=360°-m°.∴∠AOB+∠DOC=21(∠ABC+∠DCB)=21(360°-m°)=180°-21m°.∴∠BOC=180°-(∠AOB+∠DOC)=180°-(180°-21m°)=21m°.【答案】21m°.12.有一条直的等宽纸带,按图(1)折叠时,纸带重叠部分中的∠=度.图(1)【提示】裁一张等宽纸带按图示折叠,体会一下题目的含义.将等宽纸带展平,便得图(2).由此图可知∠DAC=30°.AB是∠C′AC的平分线.∴∠=75°.图(2)【答案】75°.【点评】解类似具有操作性的实际问题时,不妨动手做一做,从中感受一下题目的意义,华人教育有限公司版权所有进而将实际问题转化成数学问题.用数学知识解决实际问题.这样做不仅能培养我们抽象思维和空间想象能力,而且能提高我们解决实际问题的能力.13.把命题“在同一平面内垂直于同一直线的两直线互相平行”写成“如果…那么…”的形式是:如果______________,那么_____________.【答案】在同一平面内两条直线垂直于同一条直线,这两条直线互相平行.14.如图,在长方体中,与面BCC′B′平行的面是面;与面BCC′B′垂直的面是,与棱A′A平行的面有,与棱A′A垂直的面有.【答案】面ADD′A;面ABB′A′,面ABCD,面A′B′C′D′,面DCC′D′;面DCC′D′,面BCC′B′;面ABCD,面A′B′C′D′.(三)选择题(每小题3分,共21分)15.如图,已知直线AB与CD相交于点O,OE⊥CD.垂足为O,则图中∠AOE和∠DOB的关系是……………………………………………………………………()(A)同位角(B)对顶角(C)互为补角(D)互为余角【提示】由OE⊥CD,知:∠AOE与∠AOC互余.∠AOC与∠BOD是对顶角.所以∠AOE与∠DOB互为余角.【答案】D.16.如图,CD⊥AB,垂足为D,AC⊥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有…………………………………………………………()(A)1条(B)3条(C)5条(D)7条【提示】CD的长表示点C到AB的距离;AC的长表示点A到BC的距离;BC的长表示点B到AC的距离;AD的长表示点A到CD的距离,BD的长表示点B到CD的距离.共5条.【答案】C.17.若AO⊥BO,垂足为O,∠AOC︰∠AOB=2︰9,则∠BOC的度数等于……()(A)20°(B)70°(C)110°(D)70°或110°华人教育有限公司版权所有【提示】OC可在∠AOB内部,也可在∠AOB外部,如图可示,故有两解.设∠AOC=2x°,则∠AOB=9x°.∵AO⊥BO,∴∠AOB=90°.∵9x=90°,x=10°,∠AOC=2x=20°.(1)∠BOC=∠AOB-∠AOC=90°-20°=70°;(2)∠BOC=∠AOB+∠AOC=90°+20°=110°.【答案】D.18.下列命题中,真命题是……………………………………………………………()(A)同位角相等工(B)同旁内角相等,两直线平行(C)同旁内角互补(D)同一平面内,平行于同一直线的两直线平行【提示】两直线不平行,则同位角不相等,同旁内角不互补,所以A、C错误,B也不一定成立.如图所示直线a、b被直线c所截.∠1=∠2,∠3=∠4.显然a与b不平行.【答案】D.19.直线AB∥CD,且与EF、GH相交成如图可示的图形,则共得同旁内角…()(A)4对(B)8对(C)12对(D)16对【提示】该图可分离出四个基本图形,如图所示.第三条直线截两平行线,此时图形呈“”型,有同旁内角两对;第三条直线截两相交线,此时图形呈“”型,有同旁内角六对.故图中共有同旁内角2×2+6×2=16(对).【答案】D.20.如图,AD∥EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是………………………………………………………………………………()华人教育有限公司版权所有(A)2(B)4(C)5(D)6【提示】由AD∥EF∥BC,且EG∥AC可得:∠1=∠DAH=∠FHC=∠HCG=∠EGB=∠GEH除∠1共5个.【答案】C.21.某人从A点出发向北偏东60°方向速到B点,再从B点出发向南偏西15°方向速到C点,则∠ABC等于……………………………………………………………()(A)75°(B)105°(C)45°(D)135°【提示】按要求画出图形再计算∵NA∥BS,∴∠NAB=∠SBA=60°.∵∠SBC=15°,∴∠ABC=∠SBA-∠SBC=60°-15°=45°.【答案】C.(四)解答题(本题5分)22.根据命题“角平分线上的点到角的两边距离相等”,画出图形,并结合图形写出已知、求证(不证明).【答案】已知:OC平分∠AOB,P是OC上任意一点.PD⊥OB,PE⊥OA,垂足分别是D、E.求证:PE=PD.五、计算题(第23、24题,每题5分.第25、26题每题6分,共22分)23.如图,AB∥CD∥PN,∠ABC=50°,∠CPN=150°.求∠BCP的度数.华人教育有限公司版权所有【提示】由AB∥CD,∠ABC=50°可得∠BCD=50°.由PN∥CD,∠CPN=150°,可得∠PCD=30°.∴∠BCP=∠BCD-∠PCD=50°-30°=20°.【答案】20°.24.如图,∠CAB=100°,∠ABF=110°,AC∥PD,BF∥PE,求∠DPE的度数.【提示】由AC∥PD,∠CAB=100°,可得∠APD=80°.同理可求∠BPE=70°.∴∠DPE=180°-∠APD-∠BPE=180°-80°-70°=30°.【答案】30°.25.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求∠PAG的度数.【提示】由DB∥FG∥EC,可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP平分∠BAC得∠CAP=21∠BAC=21×96°=48°.由FG∥EC得∠GAC=ACE=36°.∴∠PAG=48°-36°=12°.【答案】12°.26.如图,AB∥CD,∠1=115°,∠2=140°,求∠3的度数.华人教育有限公司版权所有【提示】过点E作EG∥AB.∵AB∥CD由平行公理推论可得EG∥CD.由此可求得∠AEC的度数.由平角定义可求得∠3的度数.【答案】75°.(五)证明题(每题6分,共24分)27.已知:如图.AB∥CD,∠B=∠C.求证:∠E=∠F.【提示】证明AC∥BD.【答案】证明:∵AB∥CD(已知),∴∠B=∠CDF(两直线平行,同位角相等).∵∠B=∠C(已知),∴∠CDF=∠C(等量代换).∴AC∥BD(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).28.已知:如图,AC∥DE,DC∥EF,CD平分∠BCD.求证:EF平分∠BED.【提示】由AC∥DE.DC∥EF证∠1=∠3.由DC∥EF证∠2=∠4.再由CD平分∠BCA,即可证得∠3=∠4.【答案】证明:∵AC∥DE(已知),∴∠1=∠5(两直线平行,内错角相等).同理∠5=∠3.华人教育有限公司版权所有∴∠1=∠3(等量代换).∵DC∥EF(已知),∴∠2=∠4(两直线平行,同位角相等).∵CD平分∠ACB,∴∠1=∠2(角平分线定义),∴∠3=∠4(等量代换),∴EF平分∠BED(角平分线定义).29.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.【提示】过点E作EF∥AB,证

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功