第1页(共29页)2016年江苏省泰州市中考数学试卷一、选择题:本大题共有6小题,每小题3分,共18分1.(3分)4的平方根是()A.±2B.﹣2C.2D.2.(3分)人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣73.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.5.(3分)对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1B.众数是﹣1C.中位数是0.5D.方差是3.56.(3分)实数a、b满足+4a2+4ab+b2=0,则ba的值为()A.2B.C.﹣2D.﹣二、填空题:本大题共10小题,每小题3分,共30分7.(3分)(﹣)0等于.8.(3分)函数中,自变量x的取值范围是.9.(3分)抛掷一枚质地均匀的正方体骰子1枚,朝上一面的点数为偶数的概率是.10.(3分)五边形的内角和是°.第2页(共29页)11.(3分)如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为.12.(3分)如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.13.(3分)如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为cm.14.(3分)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.15.(3分)如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为.16.(3分)二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为.第3页(共29页)三、解答题17.(12分)计算或化简:(1)﹣(3+);(2)(﹣)÷.18.(8分)某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布条形图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18a围棋类140.28喜剧类80.16国画类b0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布条形图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?19.(8分)一只不透明的袋子中装有3个球,球上分别标有数字0,1,2,这些第4页(共29页)球除了数字外其余都相同,甲、乙两人玩摸球游戏,规则如下:先由甲随机摸出一个球(不放回),再由乙随机摸出一个球,两人摸出的球所标的数字之和为偶数时则甲胜,和为奇数时则乙胜.(1)用画树状图或列表的方法列出所有可能的结果;(2)这样的游戏规则是否公平?请说明理由.20.(8分)随着互联网的迅速发展,某购物网站的年销售额从2013年的200万元增长到2015年的392万元.求该购物网站平均每年销售额增长的百分率.21.(10分)如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.22.(10分)如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)23.(10分)如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;(2)若PF:PC=1:2,AF=5,求CP的长.第5页(共29页)24.(10分)如图,点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.25.(12分)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.26.(14分)已知两个二次函数y1=x2+bx+c和y2=x2+m.对于函数y1,当x=2时,该函数取最小值.(1)求b的值;第6页(共29页)(2)若函数y1的图象与坐标轴只有2个不同的公共点,求这两个公共点间的距离;(3)若函数y1、y2的图象都经过点(1,﹣2),过点(0,a﹣3)(a为实数)作x轴的平行线,与函数y1、y2的图象共有4个不同的交点,这4个交点的横坐标分别是x1、x2、x3、x4,且x1<x2<x3<x4,求x4﹣x3+x2﹣x1的最大值.第7页(共29页)2016年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题:本大题共有6小题,每小题3分,共18分1.(3分)4的平方根是()A.±2B.﹣2C.2D.【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:A.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.2.(3分)人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000077=7.7×10﹣6,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形.是中心对称图形,故错误;第8页(共29页)B、是轴对称图形,又是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形.不是中心对称图形,故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.【分析】该几何体的左视图为一个矩形,俯视图为矩形.【解答】解:该几何体的左视图是边长分别为圆的半径和厚的矩形,俯视图是边长分别为圆的直径和厚的矩形,故选D.【点评】本题考查了简单几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.5.(3分)对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1B.众数是﹣1C.中位数是0.5D.方差是3.5【分析】根据众数、中位数、方差和平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【解答】解:这组数据的平均数是:(﹣1﹣1+4+2)÷4=1;﹣1出现了2次,出现的次数最多,则众数是﹣1;把这组数据从小到大排列为:﹣1,﹣1,2,4,最中间的数是第2、3个数的平均数,则中位数是=0.5;这组数据的方差是:[(﹣1﹣1)2+(﹣1﹣1)2+(4﹣1)2+(2﹣1)2]=4.5;第9页(共29页)则下列结论不正确的是D;故选D.【点评】此题考查了方差、平均数、众数和中位数,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2];一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)实数a、b满足+4a2+4ab+b2=0,则ba的值为()A.2B.C.﹣2D.﹣【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:整理得,+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,ba=2﹣1=.故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.二、填空题:本大题共10小题,每小题3分,共30分7.(3分)(﹣)0等于1.【分析】依据零指数幂的性质求解即可.【解答】解:由零指数幂的性质可知:(﹣)0=1.故答案为:1.【点评】本题主要考查的是零指数幂的性质,掌握零指数幂的性质是解题的关键.第10页(共29页)8.(3分)函数中,自变量x的取值范围是.【分析】根据分式有意义的条件是分母不为0;令分母为0,可得到答案.【解答】解:根据题意得2x﹣3≠0,解可得x≠,故答案为x≠.【点评】本题主要考查函数自变量的取值范围和分式有意义的条件,当函数表达式是分式时,考虑分式的分母不能为0.9.(3分)抛掷一枚质地均匀的正方体骰子1枚,朝上一面的点数为偶数的概率是.【分析】根据概率公式知,6个数中有3个偶数,故掷一次骰子,向上一面的点数为偶数的概率是.【解答】解:根据题意可得:掷一次骰子,向上一面的点数有6种情况,其中有3种为向上一面的点数为偶数,故其概率是=.故答案为:.【点评】本题主要考查了概率的求法的运用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.10.(3分)五边形的内角和是540°.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:(5﹣2)•180°=540°,故答案为:540°.【点评】本题考查的是多边形的内角和的计算,掌握多边形的内角和可以表示成(n﹣2)•180°是解题的关键.第11页(共29页)11.(3分)如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为1:9.【分析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE与三角形ABC相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE:S△ABC=(AD:AB)2=1:9,故答案为:1:9.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.12.(3分)如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于20°.【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【解答】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,第12页(共29页)∵∠DAC