数学史简答题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

蒁1.简述阿基米德的生活时代、代表著作以及在数学上的主要成就。答:阿基米德生活在古希腊亚历山大前期,代表著作有:《论球与圆柱》,《圆的度量》,《劈锥曲面与回转椭圆体》,《论螺线》,《平面图形》,《数沙器》,《抛物线图形求积法》等,阿基米德的主要成就有:用力学方法求出球体积,抛物或弓形的面积,托球体、抛物或旋转体截体和球缺体积;用穷竭法求出圆面积和一系列曲边形面积与体积;得到的近似值为22/7。蚇2.朱世杰(什么朝代、什么地方的人、代表著作和数学创造)。答:朱世杰是13世纪至14世纪元代数学家,燕山人。代表著作是《四元玉鉴》,其主要数学成就是求解方程的四元术、高阶等差数列研究及其在内插法上的应用。螃3.简述《九章算术》的主要内容及在中国数学史上的意义。答:《九章算术》是我国古代的一本传世数学名著,一直作为我国传统数学的代表作。《九章算术》是以应用问题集的形式表述的,一共收入246个问题,分为九章,分别为方田,粟米,衰分,少广,商功,均输,盈不足,方程,勾股。标志着中国传统数学的知识体系已初步形成,对中国数学的发展的历史作用如同《几何原本》对西方数学影响一样。芁4.简述笛卡尔的生活年代、所在国家、代表著作以及在数学上的主要成就。答:笛卡尔(1596-1650)出生于法国的拉哈耶。主要著作有《方法论》其中包括:《折光学》、《大气现象》和《几何学》。主要成就有:开创性地用代数方法研究几何问题,把代数方程和曲线、曲面联系起来;引出了变量和函数的概念。薀5.简述运筹学的建立和发展过程。答:运筹学是运用数学方法解决生产、国防、商业和其他领域中的安排、筹划、控制、管理等有关问题的音乐数学的分支。最早产生于二战中的英国,用以解决空防雷达信息系统与战斗机系统的协同配合问题。不久美军也开始了类似的研究,并在战争中建有奇功。目前运筹学已包括有数学规划论、博弈论、排队论、决策分析、图论等。肆6.花拉子米(什么时代、什么地方的数学家、代表著作和重要贡献)。答:花拉子米是九世纪阿拉伯数学家,代表著作有:《代数学》和《印度的计算术》;主要贡献有:提出“还原”与“对消”的解方程的基本变形法则;给出了一次和二次方程的一般解法,用几何方法给出证明;给出了四则运算的定义和法则。均没有正整数解n,方程nnnzyx蒃7.简述费马大定理的内容、发现过程以及证明的状况。答:费马的大定理:对每个正整数3zyx,,。该定理是费马于1637年在读古希腊数学家丢番图的《算术》一书时,给出的猜想。1995年5月,英国数学家怀尔斯综合运用了数论、代数与几何方面近年来德重要成果和方法,在《数学年刊》发表论文“模曲线和费马最后定理”标志着该定理证明的最后完成。芃8.简述莱布尼茨生活在哪个世纪、所在国家及在数学上的主要成就。蚈答:莱布尼茨于1646年出生在德国的莱比锡,其主要数学成就有:从数列的阶差入手发明了微积分;论述了积分与微分的互逆关系;引入积分符号;首次引进“函数”一词;发明了二进位制,开始构造符号语言,在历史上最早提出了数理逻辑的思想。薆9.写出数学基础探讨过程中所出现的“三大学派”的名称、代表人物、主要观点。芄答:一,逻辑主义学派,代表人物是罗素和怀特黑德,主要观点是:数学仅仅是逻辑的一部分,全部数学可以由逻辑推导出来。二,形式主义学派,代表人物是希尔伯特,主要观点是:将数学看成是形式系统的科学,它处理的对象不必赋予具体意义的符号。三,直觉主义学派,代表人物是布劳维尔,主要观点是:数学不同于数学语言,数学是一种思维中的非语言的活动,在这种活动中更重要的是内省式构造,而不是公理和命题。莄10.简述刘徽所生活的朝代、代表著作以及在数学上的主要成就。肀答:刘徽生活在三国时代;代表著作有《九章算术注》;主要成就:算术上给出了系统的分数算法、各种比例算法、求最大公约数的方法,代数上有方程术、正负数加减法则的建立和开平方或开立方方法;在几何上有割圆术及徽率。羅13.罗巴切夫斯基的非欧几何。羄答:罗巴切夫斯基于1825年完成专著《平行线理论和几何原理概论及证明》标志着非欧几何的诞生,该理论是对几何原理中第五公设的研究提出命题“过直线外一点与已知直线平行的直线至少有两条”,并进行严格逻辑推理,得出的几何理论。膁14.简述控制论的建立和发展过程。腿答:控制论是解决通信中的“滤波问题”和战争中“预报问题”而发展起来的应用数学。二战中美国数学家维纳受命设计高射炮控制系统,他发现滤波和预报这两类问题可以用统计的观点给出统一处理,并与生理学家、电工学家、逻辑学家探讨,逐步形成了系统的控制理论。1948年,他发表了《控制论》宣告了经典控制论的诞生。20世纪60年代以后,逐渐形成了研究系统调节与控制的现代控制论。虿二、问答题:蚄1、“一个违反万物皆数的理论,葬身了一双发现的眼睛;一次对真理苦苦的追寻,造就了基础数学中最重要的课程;一回回不断地完善理论系统,奠定了数学的基石。”指的是数学史上的哪三次重大事件?膃答.第一次数学危机─—无理数的发现(第一次数学危机表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示。反之,数却可以由几何量表示出来。整数的尊祟地位受到挑战,古希腊的数学观点受到极大的冲击。于是,几何学开始在希腊数学中占有非凡地位。同时也反映出,直觉和经验不一定靠得住,而推理证实才是可靠的。从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系。)第二次数学危机——无穷小是零吗(直到19世纪,柯西具体而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决,第二次数学危机的解决使微积分更完善。)薁第三次数学危机——罗素悖论的产生(引发了关于数学逻辑基础可靠性的问题,导致无矛盾的集合论公理系统(即所谓ZF公理系统)的产生。在这场危机中集合论得到较快的发展,数学基础的进步更快,数理逻辑也更加成熟。)肈2.(15分)叙述费马大定理,并简要说明该定理的证实过程。答.费马大定理:不存在正整数x、y、z,使得;n为大于2的正整数。蒅1:1676年,数学家根据费马的少量提示用无穷递降法证实n=4。羀2:1770年,欧拉证实了n=3的情形3:1825年,狄利克雷和勒让德证实了n=5的情形,用的是欧拉所用方法的延伸。4:1839年,法国数学家拉梅证实了n=7的情形,他的证实使用了跟7本身结合的很紧密的巧秒工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证实,但没有成功。5:库默尔在1844年提出了“理想数”概念,他证实了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。6:1983年,德国数学家法尔廷斯证实了一条重要的猜想——莫德尔猜想这样的方程至多有有限个正整数解,他由于这一贡献,获得了菲尔兹奖。7:1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证实向前迈进了一步。8:1985年,德国数学家弗雷指出了“谷山——志村猜想”和“费马大定理”之间的关系9:1986年,美国数学家里贝特证实了弗雷命题,于是希望便集中于“谷山——志村猜想”。10:1993年6月,英国数学家维尔斯证实了:对有理数域上的一大类椭圆曲线,“谷山——志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证实了“费马大定理”;但专家对他的证实审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证实了“费马大定理”蚀3.(15分)简述学习数学史的意义。蒇答.1、数学史揭示出数学知识的现实来源和应用,从而可以从中感受到数学在文化史和科学进步史上的地位与影响,熟悉到数学是一种生动的、基本的人类文化活动,以及数学在当代社会发展中的作用,并且关注数学与其他学科之间的关系。膅2、数学史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程。这既可以激发对数学的爱好,培养探索精神。肁3、通过阅读许多数学家在成长过程中遭遇过挫折,了解一些大数学家是如何遭遇挫折和犯错误的,不仅可以使我们在数学方法上从反面获得全新的体会,而且知道大数学家也同样会犯错误、遭遇挫折,对正确看待学习过程中碰到的困难、树立学习数学的自信心会产生重要的作用Forpersonaluseonlyinstudyandresearch;notforcommercialuse

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功