21.1.1一元二次方程1概念

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

?1、你还记得什么叫方程?什么叫方程的解吗?2、什么是一元一次方程?它的一般形式是怎样的?3、我们知道了利用一元一次方程可以解决生活中的一些实际问题,你还记得利用一元一次方程解决实际问题的步骤吗??问题(1)要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,求雕像的下部应设计为高多少米?ACB雕像上部的高度AC,下部的高度BC应有如下关系:分析:2BCBCAC即ACBC22设雕像下部高xm,于是得方程)2(22xx整理得0422xxx2-x?问题(2)有一块矩形铁皮,长100㎝,宽50㎝,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600平方厘米,那么铁皮各角应切去多大的正方形?100㎝50㎝x3600分析:设切去的正方形的边长为xcm,则盒底的长为,宽为.3600)250)(2100(xx(100-2x)cm(50-2x)cm根据方盒的底面积为3600cm2,得0350752xx即?问题(3)要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?分析:全部比赛共4×7=28场设应邀请x个队参赛,每个队要与其他个队各赛1场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共场.28)1(21xx562xx即(x-1)0422xx0350752xx0562xx这三个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?特点:①都是整式方程;②只含一个未知数;③未知数的最高次数是2.一元二次方程的概念•像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程叫做一元二次方程(quadraticequationinoneunknown)21109000xx是一元二次方程吗?一元二次方程的一般形式一般地,任何一个关于x的一元二次方程都可以化为的形式,我们把(a,b,c为常数,a≠0)称为一元二次方程的一般形式。20axbxc20axbxc为什么要限制a≠0,b,c可以为零吗?想一想ax2+bx+c=0(a≠0)二次项系数一次项系数?例题讲解•[例1]判断下列方程是否为一元二次方程?•(1)•(2)•(3)•(4)42x2112xxx22)2(4xx3523yx?例题讲解•[例2]将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:例题讲解)2(5)1(3xxx第27页练习第1、2题例题讲解例题讲解•[例3]方程(2a—4)x2—2bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?解:当a≠2时是一元二次方程;当a=2,b≠0时是一元一次方程;1.下列方程中,无论a为何值,总是关于x的一元二次方程的是()A.(2x-1)(x2+3)=2x2-aB.ax2+2x+4=0C.ax2+x=x2-1D.(a2+1)x2=02.当m为何值时,方程是关于x的一元二次方程.0527)1(24mxxmmD?•3.将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:yy26⑴⑵⑶8)3)(2(xx2)3()32)(32(xxx1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式一般地,任何一个关于x的一元二次方程都可以化为的形式,我们把(a,b,c为常数,a≠0)称为一元二次方程的一般形式。20axbxc20axbxc(3)一个正方形的面积的2倍等于15,这个正方形的边长是多少?(4)一个数比另一个数大3,且两个数之积为0,求这两个数。

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功