远程视频监控系统大学毕业论文外文文献翻译及原文

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

毕业设计(论文)外文文献翻译文献、资料中文题目:远程视频监控系统文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:电子信息工程班级:姓名:学号:指导教师:翻译日期:2017.02.14外文文献翻译ASystemforRemoteVideoSurveillanceandMonitoringThethrustofCMUresearchundertheDARPAVideoSurveillanceandMonitoring(VSAM)projectiscooperativemulti-sensorsurveillancetosupportbattlefieldawareness.UnderourVSAMIntegratedFeasibilityDemonstration(IFD)contract,wehavedevelopedautomatedvideounderstandingtechnologythatenablesasinglehumanoperatortomonitoractivitiesoveracomplexareausingadistributednetworkofactivevideosensors.Thegoalistoautomaticallycollectanddisseminatereal-timeinformationfromthebattlefieldtoimprovethesituationalawarenessofcommandersandstaff.Othermilitaryandfederallawenforcementapplicationsincludeprovidingperimetersecurityfortroops,monitoringpeacetreatiesorrefugeemovementsfromunmannedairvehicles,providingsecurityforembassiesorairports,andstakingoutsuspecteddrugorterroristhide-outsbycollectingtime-stampedpicturesofeveryoneenteringandexitingthebuilding.Automatedvideosurveillanceisanimportantresearchareainthecommercialsectoraswell.Technologyhasreachedastagewheremountingcamerastocapturevideoimageryischeap,butfindingavailablehumanresourcestositandwatchthatimageryisexpensive.Surveillancecamerasarealreadyprevalentincommercialestablishments,withcameraoutputbeingrecordedtotapesthatareeitherrewrittenperiodicallyorstoredinvideoarchives.Afteracrimeoccurs–astoreisrobbedoracarisstolen–investigatorscangobackafterthefacttoseewhathappened,butofcoursebythenitistoolate.Whatisneedediscontinuous24-hourmonitoringandanalysisofvideosurveillancedatatoalertsecurityofficerstoaburglaryinprogress,ortoasuspiciousindividualloiteringintheparkinglot,whileoptionsarestillopenforavoidingthecrime.Keepingtrackofpeople,vehicles,andtheirinteractionsinanurbanorbattlefieldenvironmentisadifficulttask.TheroleofVSAMvideounderstandingtechnologyinachievingthisgoalistoautomatically“parse”peopleandvehiclesfromrawvideo,determinetheirgeolocations,andinsertthemintodynamicscenevisualization.Wehavedevelopedrobustroutinesfordetectingandtrackingmovingobjects.Detectedobjectsareclassifiedintosemanticcategoriessuchashuman,humangroup,car,andtruckusingshapeandcoloranalysis,andtheselabelsareusedtoimprovetrackingusingtemporalconsistencyconstraints.Furtherclassificationofhumanactivity,suchaswalkingandrunning,hasalsobeenachieved.Geolocationsoflabeledentitiesaredeterminedfromtheirimagecoordinatesusingeitherwide-baselinestereofromtwoormoreoverlappingcameraviews,orintersectionofviewingrayswithaterrainmodelfrommonocularviews.Thesecomputedlocationsfeedintoahigherleveltrackingmodulethattasksmultiplesensorswithvariablepan,tiltandzoomtocooperativelyandcontinuouslytrackanobjectthroughthescene.Allresultingobjecthypothesesfromallsensorsaretransmittedassymbolicdatapacketsbacktoacentraloperatorcontrolunit,wheretheyaredisplayedonagraphicaluserinterfacetogiveabroadoverviewofsceneactivities.Thesetechnologieshavebeendemonstratedthroughaseriesofyearlydemos,usingatestbedsystemdevelopedontheurbancampusofCMU.Detectionofmovingobjectsinvideostreamsisknowntobeasignificant,anddifficult,researchproblem.Asidefromtheintrinsicusefulnessofbeingabletosegmentvideostreamsintomovingandbackgroundcomponents,detectingmovingblobsprovidesafocusofattentionforrecognition,classification,andactivityanalysis,makingtheselaterprocessesmoreefficientsinceonly“moving”pixelsneedbeconsidered.Therearethreeconventionalapproachestomovingobjectdetection:temporaldifferencing;backgroundsubtraction;andopticalflow.Temporaldifferencingisveryadaptivetodynamicenvironments,butgenerallydoesapoorjobofextractingallrelevantfeaturepixels.Backgroundsubtractionprovidesthemostcompletefeaturedata,butisextremelysensitivetodynamicscenechangesduetolightingandextraneousevents.Opticalflowcanbeusedtodetectindependentlymovingobjectsinthepresenceofcameramotion;however,mostopticalflowcomputationmethodsarecomputationallycomplex,andcannotbeappliedtofull-framevideostreamsinreal-timewithoutspecializedhardware.UndertheVSAMprogram,CMUhasdevelopedandimplementedthreemethodsformovingobjectdetectionontheVSAMtestbed.Thefirstisacombinationofadaptivebackgroundsubtractionandthree-framedifferencing.Thishybridalgorithmisveryfast,andsurprisinglyeffective–indeed,itistheprimaryalgorithmusedbythemajorityoftheSPUsintheVSAMsystem.Inaddition,twonewprototypealgorithmshavebeendevelopedtoaddressshortcomingsofthisstandardapproach.First,amechanismformaintainingtemporalobjectlayersisdevelopedtoallowgreaterdisambiguationofmovingobjectsthatstopforawhile,areoccludedbyotherobjects,andthatthenresumemotion.Onelimitationthataffectsboththismethodandthestandardalgorithmisthattheyonlyworkforstaticcameras,orina”stepandstare”modeforpan-tiltcameras.Toovercomethislimitation,asecondextensionhasbeendevelopedtoallowbackgroundsubtractionfromacontinuouslypanningandtiltingcamera.Throughcleveraccumulationofimageevidence,thisalgorithmcanbeimplementedinreal-timeonaconventionalPCplatform.Afourthapproachtomovingobjectdetectionfromamovingairborneplatformhasalsobeendeveloped,underasubcontract

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功