社交网络中谣言传播动力学研究与思考资料

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

社交网络中谣言传播动力学研究与思考南京航空航天大学理学院赵洪涌(合作者:朱霖河WangHaiyan)基于传染病传播理论的网络谣言传播模型建模方法基于常微分方程的网络谣言传播模型社交网络谣言传播研究背景123基于偏微分方程的网络谣言传播模型未来研究工作45信息网络:信息网络是信息传输、接收、共享的虚拟平台,通过它把各个点、面、体的信息联系到一起,从而实现诸如文字、图片、声音、视频等资源的共享。在数学上,通常可以利用由节点和连线构成的图来刻画信息网络中信息传播的机理。商业信息网络校园信息网络现实生活与信息网络现实生活与信息网络社交网络:社交网络(SNS)即社交网络服务,是一个人与人之间的网络,通过网络这一载体把人们连接起来。其主要作用是为一群拥有相同兴趣与活动的人创建社区服务,这类服务往往是基于互联网,为用户提供各种联系、交流的交互通路,为信息的交流与及时分享提供新的途径。整个社交网络发展的过程是循着人们逐渐将线下生活的更完整的信息流转到线上低成本管理,这让虚拟社交网络越来越与现实世界的社交出现交叉。社交网络社交网络与谣言传播社交网络时代造就了“指尖上的信息”,然而社交网络对于虚拟人群的约束较少,大大削弱了网络中各类信息的确定性和可靠性.尤其是关乎国家发展、社会生活及个人利益的谣言信息等,在经过社交网络的发酵之后,可迅速成为网络突发事件,引起的巨大负面效应给社会稳定带来的危害往往让人猝不及防.◆2011年网络谣言引起的发生在我国沿海地区的抢盐风暴事件◆2012年网友“米朵麻麻”经微博发布非典变异病毒传播谣言◆2013年北京等多地飞往上海的航班受到虚假恐怖信息的威胁◆2014年出现的被社交网络谣言恶意抹黑的“张海迪”事件◆2015年社交网络上疯传的各类关于“新交规”的谣言事件社交网络谣言传播的思考观察社交网络中这些恶性虚假信息肆意传播的现象可以很自然地提出下面令人十分关注并迫切需要解决的问题:★如何定性和定量地揭示社交网络中谣言等有害信息的内在传播规律?★怎样保持当前不断遭受谣言等有害信息侵蚀的网络系统的平稳安全运行?★相关管理层及公众媒介应该针对网络谣言传播规律制定哪些适当的调控政策?基于传染病传播理论的网络谣言传播模型建模方法基于常微分方程的网络谣言传播模型社交网络谣言传播研究背景123基于偏微分方程的网络谣言传播模型未来研究工作45两类传播动力学的相互关系构建更加准确、更加符合实际情况的网络谣言等有害信息传播的数学模型,已成为目前广大学者研究和分析网络谣言传播机制的一个重要手段.经典的网络谣言传播模型的研究延续了传染病传播模型的建模思想和分析方法,网络谣言和传染病作为有害信息源,具有很多类似的传播机理,然而,由于两者所处的实际背景的差异性,两者在传播方式上又保留了各自的特性.准确的分析两类传播动力学之间的相互关系是更好的研究网络谣言传播机制和建立更加合理的网络谣言传播模型的基础.两类传播动力学的共同点●基于仓室模型建立各自的传播动力学模型,通过理论和实验分析疾病传播及网络谣言传播的内在机制.●关注模型的诸如稳定性、分岔、周期解、混沌等动力学行为的分析及传播源最终的传播态势.●考虑诸如政府部门、外界舆论等社会因素对传播源传播过程的影响,引进控制手段建立相应的调控模型.●根据现实传播的特点,对基本传播模型引进恰当的能刻画和反映传播源滞后传播特征的时滞参数.两类传播动力学的共同点●根据传播动力学理论,引进基本再生数概念作为传播阈值进行动力学分析.●考虑空间和时间两个因素对传播的影响,基于反应扩散方程理论建立相应的传染病与网络谣言时空传播模型.●基于复杂网络理论,考虑网络拓扑结构成为研究复杂网络上疾病传播和谣言传播共同点.两类传播动力学的不共同点●传统的SEIR传染病模型中,对处于潜伏期的个体处理只有一种情况,即以某种概率变为染病个体,但这种处理方式对网络谣言传播的研究不再适用.建立网络谣言传播模型的过程中,我们需要考虑个体之间的差异,即当个体处于潜伏期时会出现不同的情况,有些(由于受教育因素,自身具有识别信息真伪的能力)可能会直接变为免疫个体,而不进行谣言的传播和扩散;另一些则可能变为易感个体,进行谣言传播.●利用脉冲微分方程研究传染病传播机制,即对疾病病情进行间断或周期性控制更加符合现实情况.然而这种情况一般不适合网络谣言传播的研究.网络谣言传播具有速度快、覆盖面广、流通量大、更新快、危害大等基本特征,所以对网络上谣言的传播进行间断的控制无法起到遏制的效果.两类传播动力学的不共同点●传染病模型建模时一般会考虑到种群的自然出生率和死亡率等因素,然而由于网络信息传播速度快、信息量大、信息更新频繁,从而考虑信息传播过程中人口出生和死亡则不符合实际背景.但是由于信息传播是建立在人与人之间的一种传播模式,所以考虑人群心理因素是必须的,如网络用户对信息本身失去兴趣而停止传播及新网民加入社交网络而获得该消息源等.疾病发生是一种自然现象,而谣言扩散是一种主观能动行为,所以建立谣言传播模型时必须考虑群体心理因素这一重要环节.社交网络谣言传播模型建模的一般步骤传染源(例如,突发事件等公共社会生活中某些人群为追求自身利益、恐吓威胁他人及破坏社会稳定而散播的扭曲事实真相的言论、文字等不实信息)考虑社交网络信息传播的三个基本条件传播途径(例如,不实信息离开传染源到达易感人群的途径)易感人群(例如,对不实信息缺乏认知辨识能力的群体)社交网络谣言传播模型建模的一般步骤(1)根据具体的网络谣言类型,进行传播学的机理分析,主要包括易受感染的人群类型,谣言的传播途径,流行特点,传播危害等方面;利用动力学方程对谣言传播建模的一般步骤(2)确定谣言传播过程中的相关变量和参数,结合现实意义做必要的假设,并利用微分方程的手段推导谣言传播动力学模型;社交网络谣言传播模型建模的一般步骤(3)对建立的动力学模型进行理论分析,主要可以包括稳定性分析、分岔分析、混沌分析、参数灵敏度分析以及基本再生数计算等;(4)利用具体数据对模型的参数进行估计,在此基础上,对建立的模型进行检验,进而进行谣言传播的预测和预警及干预措施评估;在真实数据暂时缺失的条件下,也可根据经验,采用理论数据对模型的准确性进行评估,待数据完善后做进一步分析论证。基于传染病传播理论的网络谣言传播模型建模方法基于常微分方程的网络谣言传播模型社交网络谣言传播研究背景123基于偏微分方程的网络谣言传播模型未来研究工作45基于常微分方程的社交网络信息传播模型2001~2002年,Zanette[1,2]等首次将信息传播理论扩展到复杂网络,以小世界网络上的信息传播为例建立了考虑网络拓扑结构的常微分信息传播模型.Zanette简化了信息传播中的感染概率机制,认为易感染者与感染者接触时100%会被感染,而感染者与其他两种类型的人接触时,则会变为免疫者.于是得到如下的SIR平均场方程:SISIIIRSIRIRIdnnndtNdnnnnnndtNNdnnnndtN作者通过对上述模型进行模拟仿真,分析了小世界网络的随机化程度使得信息在“消失”和“传播”两种状态下发生转换,指出网络结构对信息传播进程产生很大的影响.基于常微分方程的社交网络信息传播模型2004年,Moreno[3]等人进一步发展和改进了上述的模型,建立了如下的非均匀无标度网络上的信息传播模型:''''''''''''''''''()s(t)(t)(t)()s(t)()[s(t)r(t)](t)(t)(t)()[s(t)r(t)](t)(t)kKkkkKKKkKkkkKKKkkPkdikidtkkPkkPkdskiksdtkkkPkdrksdtk其中k表示与某类节点相连的其他节点的个数,P(k)表示度分布函数.在此基础上,Moreno模拟了人口为10000的无标度网络,利用蒙特卡罗随机方法研究信息传播者和免疫者人数随时间的演化过程,指出相比于稳定性较高的均匀网络,无标度网络上的信息传播具有更大的传播能力,及少量的信息传播者也会造成很大的杀伤力,这与无标度网络对事故的鲁棒性密切相关.基于常微分方程的社交网络信息传播模型2007年,Nekovee[4]等人利用平均场方程建立了一个一般性的复杂社交网络上随机信息传播模型:''''''''''''''(k,t)(k,t)(k,t)P(k|k)(k,t)(k,t)(k,t)P(k|k)k(k,t)((k,t)(k,t))P(k|k)(k,t)(k,t)k(k,t)((k,t)(k,t))P(k|k)(k,t)iisksisssrskkrssrskktktt作者通过计算拟解析解及数值模拟的方法对比了随机图和无标度网路上的信息传播阈值的行为特征,认为信息影响力收到网络拓扑结构和信息传播率的影响。进一步,他们发现无标度网络上信息传播的初始比率远高于随机图,而且随着度相关性的引进,无标度网络上的信息传播的初始比率逐渐上升.基于常微分方程的社交网络信息传播模型最近,Zhao[5]等人认为人群的心理因素对信息传播具有重要的影响,他们在基于BBV网络建立了具有遗忘机制的信息传播模型:''''''''''''''(t)(t)(t)P(|)(t)(t)(t)P(|)(t)[(t)(t)]P(|)s(t)(t)(t)[(t)(t)]P(|)s(t)llllllllllllllllllldilislldtAdsllisllssrlldtAAdrlssrlldtA作者对上述模型进行了稳态分析,并且从理论上得到了信息传播的临界阈值。实验结果表明,BBV网络上的信息传播速度明显小于未加权网络,并且遗忘机制对信息在BBV网络和未加权网络上的传播有明显的影响.结论从信息传播受众者的角度来看,信息传播过程受到社交网络拓扑结构的影响,研究不同网络结构上的信息传播具有现实意义,更多的相关研究进展可参考文献[6--10].信息传播是一种社会现象,更是一种典型的社会群体心理行为。社会心理学的研究告诉我们,凡是符合或迎合人们主观愿望、主观印象或主观偏见的信息,最容易使人相信,并乐于被人传播,而且还有可能依据传播者特定的心理倾向被随意的进行加工.更多的考虑心理因素的信息传播模型可参考文献[11-13].基于传染病传播理论的网络谣言传播模型建模方法基于常微分方程的网络谣言传播模型社交网络谣言传播研究背景123基于偏微分方程的网络谣言传播模型未来研究工作45基于偏微分方程的社交网络信息传播模型随着现代移动通讯工具的普及,以及移动设备快速的更新换代,传统的在固定终端上登陆的社交网络开始向移动设备进行转移.由此,如何紧跟时代的脚步从数学模型上同步地反映这样的变化趋势越来越受到学者们的关注.反应扩散方程(偏微分方程)揭示物质空间变化的规律,反映了物质的空间密度分布情况,因此基于反应扩散方程模拟移动社交网络谣言传播机理具有很强的现实意义和实用价值.目前关于这方面的研究还比较少.基于偏微分方程的社交网络信息传播模型(一)2012—2013年,Wang[14--15]等人以friendshiphops作为空间距离,将社交网络上的信息传播过程抽象为GrowthProcess和SocialProcess,他们基于数据拟合的方法建立了具有Logistic增长模式的空间信息传播模型:22(1)(,1)(),(,)(,)0,1.IIIdrItKxIxxlxLIIltLttxx作者采用Digg社交网络中的数据拟合发现,上述反应扩散方程可以真实的反映网络中信息的传播规律,并且模型拟合与真实数据之间具有92.08%的相似度,这为开启反应扩散方程描述网络信息传播奠定了基础.基于偏微分方程的社交网络信息传播模型(二)众所周知,网络信息鱼龙混杂,甄别和控制网络中有害信息的传播是

1 / 48
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功