1.(福建卷)函数f(x)=sinxcosx最小值是()A-1B21C21D12.(广东一模)已知sinα=53,则cos2α的值为()A2524B257C257D25243.若△ABC的内角A满足sin2A=23,则sinA+cosA等于()A.153B.-153C.53D.-534.若sin(π6-α)=13,则cos(2π3+2α)=()A.-79B.-13C.13D.795.函数f(x)=sinx-3cosx(x∈[-π,0])的单调递增区间是()A.[-π,-5π6]B.[-5π6,-π6]C.[-π3,0]D.[-π6,0]6.(江西卷)若函数f(x)=(1+3tanx)cosx,0≤x≤π2,则f(x)的最大值为()A.1B.2C.3+1D.3+27.已知sinα=55,sin(α-β)=-1010,α、β均为锐角,则β等于()A125B3C4D68.(2008·上海春)化简:cos(π3+α)+sin(π6+α)=__________________________________.9.cos43°·cos77°+sin43°·cos167°的值为________.10、tan20°+tan40°+3tan20°tan40°的值;11、若α+β=43,求(1-tanα)(1-tanβ)的值.12、已知cosα=71,cos(α+β)=-1411,α、β∈(0,2),则β=________.13.(上海春季高考)化简:cosπ3+α+sinπ6+α=________.14.(浙江)若sin(π2+θ)=35,则cos2θ=________.15.已知θ为第二象限角,且sinθ=154,求sin(θ+π4)sin2θ+cos2θ+1的值.16、(2008·广东省五校联考)已知向量a=(cosα,sinα),b=(cosβ,sinβ),|a-b|=552.(1)求cos(α-β)的值;(2)若0<α<2,-2<β<0,且sinβ=-135,求sinα.17、已知).23,45(,532sin(1)求cosα的值.(2)求满足sin(α-β)-sin(α+β)+2cosα=-1010的锐角β.18.(天津)已知cos(x-π4)=210,x∈(π2,3π4).(1)求sinx的值;(2)求sin(2x+π3)的值.