范文范例参考完美Word格式整理版概率论与数理统计课后习题答案第二章1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.【解】353524353,4,51(3)0.1C3(4)0.3CC(5)0.6CXPXPXPX故所求分布律为X345P0.10.30.62.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品个数,求:(1)X的分布律;(2)X的分布函数并作图;(3)133{},{1},{1},{12}222PXPXPXPX.【解】313315122133151133150,1,2.C22(0).C35CC12(1).C35C1(2).C35XPXPXPX故X的分布律为X012P22351235135(2)当x0时,F(x)=P(X≤x)=0范文范例参考完美Word格式整理版当0≤x1时,F(x)=P(X≤x)=P(X=0)=2235当1≤x2时,F(x)=P(X≤x)=P(X=0)+P(X=1)=3435当x≥2时,F(x)=P(X≤x)=1故X的分布函数0,022,0135()34,12351,2xxFxxx(3)3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率.【解】设X表示击中目标的次数.则X=0,1,2,3.31232233(0)(0.2)0.008(1)C0.8(0.2)0.096(2)C(0.8)0.20.384(3)(0.8)0.512PXPXPXPX故X的分布律为X0123P0.0080.0960.3840.512分布函数0,00.008,01()0.104,120.488,231,3xxFxxxx(2)(2)(3)0.896PXPXPX4.(1)设随机变量X的分布律为P{X=k}=!kak,其中k=0,1,2,…,λ>0为常数,试确定常数a.(2)设随机变量X的分布律为P{X=k}=a/N,k=1,2,…,N,范文范例参考完美Word格式整理版试确定常数a.【解】(1)由分布律的性质知001()e!kkkPXkaak故ea(2)由分布律的性质知111()NNkkaPXkaN即1a.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求:(1)两人投中次数相等的概率;(2)甲比乙投中次数多的概率.【解】分别令X、Y表示甲、乙投中次数,则X~b(3,0.6),Y~b(3,0.7)(1)(3,3)PXY33121233(0.4)(0.3)C0.6(0.4)C0.7(0.3)+22223333C(0.6)0.4C(0.7)0.3(0.6)(0.7)0.32076(2)=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X为某一时刻需立即降落的飞机数,则X~b(200,0.02),设机场需配备N条跑道,则有()0.01PXN即2002002001C(0.02)(0.98)0.01kkkkN利用泊松近似2000.024.np范文范例参考完美Word格式整理版41e4()0.01!kkNPXNk查表得N≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?【解】设X表示出事故的次数,则X~b(1000,0.0001)8.已知在五重贝努里试验中成功的次数X满足P{X=1}=P{X=2},求概率P{X=4}.【解】设在每次试验中成功的概率为p,则故所以4451210(4)C()33243PX.9.设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指示灯发出信号,(1)进行了5次独立试验,试求指示灯发出信号的概率;(2)进行了7次独立试验,试求指示灯发出信号的概率.【解】(1)设X表示5次独立试验中A发生的次数,则X~6(5,0.3)5553(3)C(0.3)(0.7)0.16308kkkkPX(2)令Y表示7次独立试验中A发生的次数,则Y~b(7,0.3)7773(3)C(0.3)(0.7)0.35293kkkkPY10.某公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为(1/2)t的泊松分布,而与时间间隔起点无关(时间以小时计).(1)求某一天中午12时至下午3时没收到呼救的概率;(2)求某一天中午12时至下午5时至少收到1次呼救的概率.【解】(1)32(0)ePX(2)52(1)1(0)1ePXPX11.设P{X=k}=kkkpp22)1(C,k=0,1,2P{Y=m}=mmmpp44)1(C,m=0,1,2,3,4分别为随机变量X,Y的概率分布,如果已知P{X≥1}=59,试求P{Y≥1}.【解】因为5(1)9PX,故4(1)9PX.而2(1)(0)(1)PXPXp范文范例参考完美Word格式整理版故得24(1),9p即1.3p从而465(1)1(0)1(1)0.8024781PYPYp12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X为2000册书中错误的册数,则X~b(2000,0.001).利用泊松近似计算,20000.0012np得25e2(5)0.00185!PX13.进行某种试验,成功的概率为34,失败的概率为14.以X表示试验首次成功所需试验的次数,试写出X的分布律,并计算X取偶数的概率.【解】1,2,,,Xk113()()44kPXk(2)(4)(2)PXPXPXk321131313()()444444k213141451()414.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.【解】以“年”为单位来考虑.(1)在1月1日,保险公司总收入为2500×12=30000元.设1年中死亡人数为X,则X~b(2500,0.002),则所求概率为(200030000)(15)1(14)PXPXPX由于n很大,p很小,λ=np=5,故用泊松近似,有5140e5(15)10.000069!kkPXk(2)P(保险公司获利不少于10000)范文范例参考完美Word格式整理版(30000200010000)(10)PXPX5100e50.986305!kkk即保险公司获利不少于10000元的概率在98%P(保险公司获利不少于20000)(30000200020000)(5)PXPX550e50.615961!kkk即保险公司获利不少于20000元的概率约为62%15.已知随机变量X的密度函数为f(x)=Ae|x|,∞x+∞,求:(1)A值;(2)P{0X1};(3)F(x).【解】(1)由()d1fxx得||01ed2ed2xxAxAxA故12A.(2)11011(01)ed(1e)22xpXx(3)当x0时,11()ede22xxxFxx当x≥0时,0||0111()ededed222xxxxxFxxxx11e2x故1e,02()11e02xxxFxx16.设某种仪器内装有三只同样的电子管,电子管使用寿命X的密度函数为f(x)=.100,0,100,1002xxx求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率;(3)F(x).【解】(1)15021001001(150)d.3PXxx范文范例参考完美Word格式整理版33128[(150)]()327pPX(2)1223124C()339p(3)当x100时F(x)=0当x≥100时()()dxFxftt100100()d()dxfttftt2100100100d1xttx故1001,100()0,0xFxxx17.在区间[0,a]上任意投掷一个质点,以X表示这质点的坐标,设这质点落在[0,a]中任意小区间内的概率与这小区间长度成正比例,试求X的分布函数.【解】由题意知X~∪[0,a],密度函数为1,0()0,xafxa其他故当x0时F(x)=0当0≤x≤a时001()()d()ddxxxxFxfttftttaa当xa时,F(x)=1即分布函数0,0(),01,xxFxxaaxa18.设随机变量X在[2,5]上服从均匀分布.现对X进行三次独立观测,求至少有两次的观测值大于3的概率.【解】X~U[2,5],即1,25()30,xfx其他5312(3)d33PXx故所求概率为22333321220C()C()33327p范文范例参考完美Word格式整理版19.设顾客在某银行的窗口等待服务的时间X(以分钟计)服从指数分布1()5E.某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,试写出Y的分布律,并求P{Y≥1}.【解】依题意知1~()5XE,即其密度函数为51e,0()50,xxfxx0该顾客未等到服务而离开的概率为25101(10)ede5xPXx2~(5,e)Yb,即其分布律为225525()C(e)(1e),0,1,2,3,4,5(1)1(0)1(1e)0.5167kkkPYkkPYPY20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X服从N(40,102);第二条路程较长,但阻塞少,所需时间X服从N(50,42).(1)若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些?(2)又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些?【解】(1)若走第一条路,X~N(40,102),则406040(60)(2)0.977271010xPXP若走第二条路,X~N(50,42),则506050(60)(2.5)0.993844XPXP++故走第二条路乘上火车的把握大些.(2)若X~N(40,102),则404540(45)(0.5)0.69151010XPXP若X~N(50,42),则504550(45)(1.25)44XPXP1(1.25)0.1056故走第一条路乘上火车的把握大些.21.设X~N(3,22),范文范例参考完美Word格式整理版(1)求P{2X≤5},P{4X≤10},P{|X|>2},P{X>3};(2)确定c使P{X>