托勒密定理及其应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

托勒密定理及其应用河北省晋州市数学论文研究协会刘同林托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.①+②得AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.这就是著名的托勒密定理,在通用教材中习题的面目出现,不被重视.笔者认为,既然是定理就可作为推理论证的依据.有些问题若根据它来论证,显然格外简洁清新.兹分类说明如下,以供探究.一、直接应用托勒密定理例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合),求证:PA=PB+PC.分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB,∵AB=BC=AC.∴PA=PB+PC.二、完善图形借助托勒密定理例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2证明:如图3,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有AC·BD=AB·CD+AD·BC.①又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.②把②代人①,得AC2=AB2+BC2.例3如图4,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD.∵∠1=∠2,∴BD=CD.故AD·BC=AB·BD+AC·BD=BD(AB+AC).三、利用“无形圆”借助托勒密定理例4等腰梯形一条对角线的平方等于一腰的平方加上两底之积.如图5,ABCD中,AB∥CD,AD=BC,求证:BD2=BC2+AB·CD.证明:∵等腰梯形内接于圆,依托密定理,则有AC·BD=AD·BC+AB·CD.又∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.四、构造图形借助托勒密定理例5若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明:如图6,作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,AD=y.由勾股定理知a、b、x、y是满足题设条件的.据托勒密定理,有AC·BD+BC·AD=AB·CD.∵CD≤AB=1,∴ax+by≤1.五、巧变原式妙构图形,借助托勒密定理例6已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B.分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c.证明:如图7,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,∴∠ABD=∠BAC.又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.依托勒密定理,有BC·AD=AB·CD+BD·AC.①而已知a2=b(b+c),即a·a=b·c+b2.②∴∠BAC=2∠ABC.六、巧变形妙引线借肋托勒密定理例7在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,析证:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图8,作△ABC的外接圆,作弦BD=BC,边结AD、CD.在圆内接四边形ADBC中,由托勒密定理,有AC·BD+BC·AD=AB·CD易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC,

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功