北京中考压轴几何综合分类解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

二、几何综合题几何综合题是中考试卷中常见的题型,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键.常见的几何综合有六类:其中包括几何的三大变换,平移、旋转、对称。还有特殊角,例如30°,45°,60°,120°,150°等。另外还有特殊点问题,例如线段中点。四点共圆在模拟考试中也略有涉及。当然还有一些比较特殊的,需要具体分析题意得出结论。一、几何三大变换几何变换一般解题思路根据变换性质,变换前后对应线段,对应角相等阶梯。平移类:做辅助线方向,对应点连线,中(石景山)27.如图,在等边△ABC中,D为边AC的延长线上一点()CDAC,平移线段BC,使点C移动到点D,得到线段ED,M为ED的中点,过点M作ED的垂线,交BC于点F,交AC于点G.(1)依题意补全图形;(2)求证:AG=CD;(3)连接DF并延长交AB于点H,用等式表示线段AH与CG的数量关系,并证明.MECDBA旋转类:确定已知旋转线段,寻找与已知旋转线段相关的线段,进行旋转,构造全等三角形。特殊角易(房山)27.已知:Rt△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D是BC边上一点(不与点B,C重合),连接AD,过点B作BE⊥AD,交AD的延长线于点E,连接CE.若∠BAD=α,求∠DBE的大小(用含α的式子表示);(2)如图2,点D在线段BC的延长线上时,连接AD,过点B作BE⊥AD,垂足E在线段AD上,连接CE.①依题意补全图2;②用等式表示线段EA,EB和EC之间的数量关系,并证明.EBCADBCA图1图2中(门头沟)27.如图,∠AOB=90°,OC为∠AOB的平分线,点P为OC上一个动点,过点P作射线PE交OA于点E.以点P为旋转中心,将射线PE沿逆时针方向旋转90°,交OB于点F.(1)根据题意补全图1,并证明PE=PF;(2)如图1,如果点E在OA边上,用等式表示线段OE,OP和OF之间的数量关系,并证明;(3)如图2,如果点E在OA边的反向延长线上,直接写出线段OE,OP和OF之间的数量关系.PPEECCBBOOAA图1图2中(密云)27.已知△ABC为等边三角形,点D是线段AB上一点(不与A、B重合).将线段CD绕点C逆时针旋转60°得到线段CE.连结DE、BE.(1)依题意补全图1并判断AD与BE的数量关系.(2)过点A作AFEB交EB延长线于点F.用等式表示线段EB、DB与AF之间的数量关系并证明.图2DCBA图1ABCD易(平谷)27.在△ABC中,∠ABC=120°,线段AC绕点A逆时针旋转60°得到线段AD,连接CD,BD交AC于P.(1)若∠BAC=α,直接写出∠BCD的度数(用含α的代数式表示);(2)求AB,BC,BD之间的数量关系;(3)当α=30°时,直接写出AC,BD的关系.PCABD对称:根据垂直平分线的性质,连接辅助线,构造全等三角形(通州)27.如图,在等边△ABC中,点D是线段BC上一点.作射线AD,点B关于射线AD的对称点为E.连接CE并延长,交射线AD于点F.(1)设∠BAF=α,用α表示∠BCF的度数;(2)用等式表示线段AF、CF、EF之间的数量关系,并证明.FECABD对称(大兴)27.在Rt△ABC中,∠ACB=90°,CA=CB.点D为线段BC上一个动点(点D不与点B,C重合),连接AD,点E在射线AB上,连接DE,使得DE=DA.作点E关于直线BC的对称点F,连接BF,DF.(1)依题意补全图形;(2)求证:∠CAD=∠BDF;(3)用等式表示线段AB,BD,BF之间的数量关系,并证明.二、特殊角类:根据特殊角,以不破坏特殊角为原则,构造直角三角形。易(延庆)27.已知:四边形ABCD中,120ABC,60ADC,AD=CD,对角线AC,BD相交于点O,且BD平分∠ABC,过点A作AHBD,垂足为H.(1)求证:ADBACB;(2)判断线段BH,DH,BC之间的数量关系;并证明.HODCBA易(顺义)27.已知:如图,在△ABC中,ABAC,∠B=45°,点D是BC边上一点,且AD=AC,过点C作CF⊥AD于点E,与AB交于点F.(1)若∠CAD=α,求∠BCF的大小(用含α的式子表示);(2)求证:AC=FC;(3)用等式直接表示线段BF与DC的数量关系.ABCDFE难(海淀)27.如图,在等腰直角△ABC中,90ABC?°,D是线段AC上一点(2CACD),连接BD,过点C作BD的垂线,交BD的延长线于点E,交BA的延长线于点F.(1)依题意补全图形;(2)若ACEα?,求ABDÐ的大小(用含α的式子表示);(3)若点G在线段CF上,CGBD=,连接DG.①判断DG与BC的位置关系并证明;②用等式表示DG,CG,AB之间的数量关系为.ABCD中(朝阳)27.如图,在Rt△ABC中,∠A=90°,AB=AC,将线段BC绕点B逆时针旋转a°(0<a<180),得到线段BD,且AD∥BC.(1)依题意补全图形;(2)求满足条件的a的值;(3)若AB=2,求AD的长.ABC三、中点问题:中点通常会涉及到斜边中线或中位线,有的时候会用到倍长中线。易(丰台)27.在△ABC中,∠ACB=90°,AC=BC,D为AB的中点,点E为AC延长线上一点,连接DE,过点D作DF⊥DE交CB的延长线于点F.(1)求证:BF=CE;(2)若CE=AC,用等式表示线段DF与AB的数量关系,并证明.易(怀柔)27.如图,等边△ABC中,P是AB上一点,过点P作PD⊥AC于点D,作PE⊥BC于点E,M是AB的中点,连接ME,MD.(1)依题意补全图形;(2)用等式表示线段BE,AD与AB的数量关系,并加以证明;(3)求证:MD=ME.CBAP四、四点共圆问题:难27.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是__________;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.五、综合:几何综合会涉及求最值问题,一般都会涉及到圆,难度比较大(西城)27.如图,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连接DE交AC于点F,连接BF.(1)求证:FB=FD;(2)点H在边BC上,且BH=CE,连接AH交BF于点N.①判断AH与BF的位置关系,并证明你的结论;②连接CN.若AB=2,请直接写出线段CN长度的最小值.(东城)27.如图,在正方形ABCD中,E是边BC上一动点(不与点B,C重合),连接DE,点C关于直线DE的对称点为Cʹ,连接ACʹ并延长交直线DE于点P,F是AC′中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP,BP,DP三条线段之间的数量关系,并证明.(3)连接AC,若正方形的边长为2,请直接写出△ACC′的面积最大值.FPC'BCADE

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功