小升初专项训练--比例百分数篇

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1小升初专项训练比例百分数篇一、小升初考试热点及命题方向分数百分数是小学六年级重点学习的知识点,也是小升初重点考察的知识点,这一部分主要考察三大块,分百应用题;比和比例;经济浓度问题;三块的地位是均等的,在考试中都有可能出现,希望同学们全面复习,而不要厚此薄彼。二、考点预测出题方式依然是大题中必然出现一道或者两道和本章内容相关的题目,占的分值权重较大,只要认真复习,掌握解题规律,则可以顺利的拿下这部分分值。三、知识要点分数百分数应用题分数、百分数应用题是小学数学的重要内容,也是小学数学重点和难点之一.一方面它是在整数应用题基础上的继续和深化;另一方面,它有其本身的特点和解题规律.因此,在这类问题中,数量之间以及“量”、“率”之间的相依关系与整数应用题比较,就显得较为复杂,这就给正确地选择解题方法,正确解答带来一定困难.为了学好分数、百分数应用题的解法必须做好以下几方面工作.①具备整数应用题的解题能力.解答整数应用题的基础知识,如概念、性质、法则、公式等仍广泛用于分数、百分数应用题.②在理解、掌握分数的意义和性质的前提下灵活运用.③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件.它可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理.④学会多角度、多侧面思考问题的方法.分数百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,在寻找正确的解题方法同时,不断地开拓解题思路.比和比例这一讲主要涉及比例的意义和性质,按比例分配,正反比例等几个知识。在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关.在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断.成正比或反比的量中都有两种相关联的量.一种量(记作x)变化时另一种量(记作y)也随着变化.与这两个量联系着,有一个不变的量(记为k)。在判断变量x与y是否成正、反比例时,我们要紧紧抓住这个不变量k.如:成正比例;如果k是y与x的积,即在x变化时,y与x的积不变:xy=k,那么y与x成反比例.如果这两个关系式都不成立,那么y与x不成(正和反)比例.经济浓度问题这一节的内容与生活实际联系很紧密,在浓度问题中要理解好溶剂、溶质、溶液、浓度这几个量之间的关系。而经济问题中,则要恰当处理好成本、售价、利润、利润率这几个量的关系。四、典型例题解析1分数百分数应用题【例1】(★★)某班有学生48人,女生占全班的37.5%,后来又转来女生若干人,这时人数恰好是占全班人数的40%,问转来几名女生?【解】这是一道变换单位“1”的分数应用题,需抓住男生人数这个不变量,如果按浓度问题做,就简单多了。浓度差之比1∶24重量之比24∶148÷24×1=2人方法二:男生原来有48×(1-37.5%)=30,来了女生后男生的人数书不变的,所以后来全班的总人数就是30÷(1-40%)=50,所以增加的2人就是转来的女生人数。【例2】(★★)把一个正方形的一边减少20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.问正方形的面积是2多少?【解】设正方形的边长是“1”.因为长方形与原来的正方形面积相等,一边减少了20%,另一边将增加所以正方形的边长是2÷25%=8(米).正方形的面积是8×8=64(平方米).【例3】(★★★)学校男生人数占45%,会游泳的学生占54%。男生中会游泳的占72%,问在全体学生中不会游泳的女生占百分之几?【解1】在全体学生中,不会游泳的女生占33.4%.在全体学生中,会游泳的男生占45%×72%=32.4%.在会游泳的学生中,男生占32.4%÷54%×100%=60%在全体学生中,不会游泳的女生占(100%-45%)-54%×(1-60%)=33.4%.【解2】画一个图非常清楚。【例4】某校四年级原有2个班,现在要重新编为3个班,将原一班的1/3与原二班的1/4组成新一班,将原一班的1/4与原二班的1/3组成新二班,余下的30人组成新三班。如果新一班的人数比新二班的人数多10%,那么原一班有多少人?【解】:原一班的1/3与原二班的1/4+原一班的1/4与原二班的1/3=7/12总人数,余下1-7/12=5/12,是30人,所以总人数=30/(5/12)=72人;72-30=42人,新一班与新二班的人数和为42人,新一班的人数比新二班的人数多10%,新一班人数:新二班人数=11:10,即原一班的(1/3-1/4)=1/12比原二班的1/12多2人,原一班比原二班共多12×2=24人,所以,原一班有24+(72-24)/2=48人。答:原一班有48人。2比和比例【例5】(★★★)一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?画出图便于解题:【解1】:BC的长:182÷13=14(厘米),BD的长:14+13=27(厘米),从图中看出AB长就是原长方形的宽,AD与AB的比是14∶5,AB与BD的比是5∶(14-5)=5∶9,原长方形面积是42×15=630(平方厘米)。答:原长方形面积是630平方厘米。【解2】:设原长方形长为14x,宽为5x.由图分析得方程(14x-13)×13-5x×13=182,9x=27,x=3。则原长方形面积(14×3)×(5×3)=630(平方厘米)。【拓展】已知长方形的周长为346米,若边长分别增加2米,则面积增加多少平方米?设两边长分别为a、b,这样增加的面积我们可以分为一个2×2的正方形,一个2×a的长方形,一个2×b的长方形,所以增加的面积就是2×(a+b)+2×2=350平方米。3【例6】(★★★)有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为2∶5。现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(左下图),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(右下图),那么做成的竖式纸盒与横式纸盒个数之比是多少?【解】4∶3。设竖式纸盒有a个,横式纸盒有b个,则共用长方形纸板(4a+3b)块,正方形纸板(a+2b)块。根据题意有:(a+2b)∶(4a+3b)=2∶5,即5(a+2b)=2(4a+3b),解得a∶b=4∶3。【例7】(★★★)某学校入学考试,参加的男生与女生人数之比是4∶3.结果录取91人,其中男生与女生人数之比是8∶5.未被录取的学生中,男生与女生人数之比是3∶4.问报考的共有多少人?【解1】报考人数是119人,录取学生中男生:91×858=56人,女:91-56=35(人).先将未录取的人数之比3:4变成4:4×34,又有56×34=42(人)未录取男生4×3=12(人),女生16(人)。报考人数是(56+12)+(35+16)=119(人)。【解2】(56+3x):(35+4x)=4:3得:X=4未录取男生4×3=12(人),女生16(人)。报考人数是(56+12)+(35+16)=119(人)。【例8】(★★★)幼儿园大班和中班共有32名男生,18名女生。已知大班男生数与女生数的比为5:3,中班中男生数与女生数的比为2:1,那么大班有女生多少名?【解】[方法一]:鸡兔同笼[思路]:由于男女生有比例关系,而且知道总数,所以我们可以用鸡兔同笼。解:假设18名女生全部是大班,则大班男生数:女生数=5:3=30:18,即男生应有30人,实际男生有32人,32-30=2,相差2个人;中班男生数:女生数=2:1=6:3,以3个中班女生换3个大班女生,每换一组可增加1个男生,需要换2组;所以,大班女生有18-3×2=12个。答:大班有女生12名。[方法二]:份数[思路]:可以把中班女生数看作“1”份,那么中班男生数为2份.从而大班中的男生数为32—2份,大班里的女生人数是18—1份.根据题意有(32—2份):(18—1份)=5:3,只要求出1份的数目即可。解:设中班女生数看作“1”,(32—2份):(18—1份)=5:3,求出一份是6人所以大班的女生则有18—6=12人.4答:大班有女生12名。3经济浓度问题【例9】(★★)某商店进了一批笔记本,按30%的利润定价.当售出这批笔记本的80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少?【解】设这批笔记本的成本是“1”.因此定价是1×(1+30%)=1.3.其中80%的卖价是1.3×80%,20%的卖价是1.3÷2×20%.因此全部卖价是1.3×80%+1.3÷2×20%=1.17.实际获得利润的百分数是1.17-1=0.17=17%.【例10】(★★★)A,B,C三个试管中各盛有10克、20克、30克水。把某种浓度的盐水10克倒入A中,混合后取出10克倒入B中,混合后又从B中取出10克倒入C中。现在C中盐水浓度是0.5%。问最早倒入A中的盐水浓度是多少?【解】最早倒入A中的盐水浓度为12%。B中盐水的浓度是(30+10)×0.5%÷10×100%=2%。现在A中盐水的浓度是(20+10)×2%÷10×100%=6%。最早倒入A中的盐水浓度为(10+10)×6%÷10=12%。【例11】(★★★)小明到商店买红、黑两种笔共66支。红笔每支定价5元,黑笔每支定价9元。由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,黑笔按定价80%付钱,如果他付的钱比按定价少付了18%,那么他买了红笔多少支?【来源】北京市第14届迎春杯数学竞赛初赛试题【解】浓度倒三角的妙用:红笔按85%优惠,黑笔按80%优惠,结果少付18%,相当于按82%优惠,可按浓度问题进行配比。与其他题不同的地方在于红、黑两种笔的单价不同,要把这个因素考虑进去。然后就可以按比例分配这66支笔了。【例12】制鞋厂生产的皮鞋按质量共分10个档次,生产最低档次(即第1档次)的皮鞋每双利润为24元。每提高一个档次,每双皮鞋利润增加6元。最低档次的皮鞋每天可生产180双,提高一个档次每天将少生产9双皮鞋。按天计算,生产哪个档次的皮鞋所获利润最大?最大利润是多少元?【解】第9档次;7776元。由题意,生产第n(n=1,2,…,10)档次的皮鞋,每天生产的双数为189-9n=9×(21-n)双,每双利润为18+6n=6×(3+n)(元),所以每天获利润[6×(3+n)]×[9×[(21-n)]=54×(3+n)×(21-n)元。两个数的和一定时,这两个数越接近,这两个数的乘积越大。上式中,因为(3+n)与(21-n)的和是24,而n=9时,(3+n)与(21-n)都等于12,所以每天生产第9档次的皮鞋所获利润最大,最大利润是54×(3+9)×(21-9)=7776(元)。(注:作业题--例题类型对照表,供参考)题1—类型1;题2,4,5,6,8—类型4;题3,7—类型51、(★★★)某中学,上年度高中男、女生共290人.这一年度高中男生增加4%,女生增加5%,共增加13人.本年度该校有男、女生各多少人?【解】男生156人,女生147人。如果女生也是增加4%,这样增加的人数是290×4%=11.6(人).比13人少1.4人.因此上年度是1.4÷(5%-4%)=140(人).本年度女生有140×(1+5%)=147(人).52、(★★★)在下图中AB,AC的长度是15,BC的长度是9.把BC折过去与AC重合,B点落在E点上,求三角形ADE与三角形ABC面积之比.【解】1∶4.三角形ADE与三角形EDC面积之比是(15-9)∶9.3、(★★★)成本0.25元的练习本1200本,按40%的利润定价出售。当销掉80%后,剩下的练习本打折扣出售,结果获得的利润是预定的86%,问剩下的练习本出售时是按定价打了什么折扣?【解】打了8折.先销掉80%,可以获得利润0.25×40%×1200×80%=96.按86%获得利润0.25×40%×1

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功