第1页(共7页)二次根式练习题及答案1.要使式子有意义,则x的取值范围是()A.x>1B.x>﹣1C.x≥1D.x≥﹣12.式子在实数范围内有意义,则x的取值范围是()A.x<1B.x≤1C.x>1D.x≥13.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣2D.若分式的值等于0,则a=±14.要使式子有意义,则a的取值范围是()A.a≠0B.a>﹣2且a≠0C.a>﹣2或a≠0D.a≥﹣2且a≠05.使有意义,则x的取值范围是.6.若代数式有意义,则x的取值范围为.7.已知是正整数,则实数n的最大值为.8.若代数式+(x﹣1)0在实数范围内有意义,则x的取值范围为.9.若实数a满足|a﹣8|+=a,则a=.四.解答题(共8小题)10.若a,b为实数,a=+3,求.第2页(共7页)11.已知22161634nnmn,求2016()mn的值?12.已知x,y为等腰三角形的两条边长,且x,y满足3264yxx,求此三角形的周长13.已知a、b、c满足+|a﹣c+1|=+,求a+b+c的平方根.14.若a、b为实数,且,求.15.已知y<++3,化简|y﹣3|﹣.第3页(共7页)16.已知a、b满足等式.(1)求出a、b的值分别是多少?(2)试求的值.17.已知实数a满足+=a,求a﹣20082的值是多少?第4页(共7页)参考答案与试题解析1.(2016•荆门)要使式子有意义,则x的取值范围是()A.x>1B.x>﹣1C.x≥1D.x≥﹣1【解答】解:要使式子有意义,故x﹣1≥0,解得:x≥1.则x的取值范围是:x≥1.故选:C.2.(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1B.x≤1C.x>1D.x≥1【解答】解:依题意得:x﹣1>0,解得x>1.故选:C.3.(2016•杭州校级自主招生)下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣2D.若分式的值等于0,则a=±1【解答】解:3a2b﹣a2b=2a2b,A错误;单项式﹣x2的系数是﹣1,B正确;使式子有意义的x的取值范围是x≥﹣2,C错误;若分式的值等于0,则a=1,错误,故选:B.4.(2016•博野县校级自主招生)要使式子有意义,则a的取值范围是()A.a≠0B.a>﹣2且a≠0C.a>﹣2或a≠0D.a≥﹣2且a≠0【解答】解:由题意得,a+2≥0,a≠0,解得,a≥﹣2且a≠0,故选:D.5.(2017•德州校级自主招生)使有意义,则x的取值范围是x≥﹣且x≠0.【解答】解:根据题意得,3x+2≥0且x≠0,解得x≥﹣且x≠0.故答案为:x≥﹣且x≠0.第5页(共7页)6.(2016•永泰县模拟)若代数式有意义,则x的取值范围为x≥2且x≠3.【解答】解:根据题意,得x﹣2≥0,且x﹣3≠0,解得,x≥2且x≠3;故答案是:x≥2且x≠3.7.(2016春•固始县期末)已知是正整数,则实数n的最大值为11.【解答】解:由题意可知12﹣n是一个完全平方数,且不为0,最小为1,所以n的最大值为12﹣1=11.8.(2016•大悟县二模)若代数式+(x﹣1)0在实数范围内有意义,则x的取值范围为x≥﹣3且x≠1.【解答】解:由题意得:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故答案为:x≥﹣3且x≠1.9.(2009•兴化市模拟)若实数a满足|a﹣8|+=a,则a=74.【解答】解:根据题意得:a﹣10≥0,解得a≥10,∴原等式可化为:a﹣8+=a,即=8,∴a﹣10=64,解得:a=74.10.(2015春•绵阳期中)若a,b为实数,a=+3,求.【解答】解:由题意得,2b﹣14≥0且7﹣b≥0,解得b≥7且b≤7,a=3,所以,==4.11.(2016•富顺县校级模拟)已知,求(m+n)2016的值?【解答】解:由题意得,16﹣n2≥0,n2﹣16≥0,n+4≠0,则n2=16,n≠﹣4,解得,n=4,则m=﹣3,(m+n)2016=1.12.(2016春•微山县校级月考)已知x,y为等腰三角形的两条边长,且x,y满足y=++4,求此三角形的周长.【解答】解:由题意得,3﹣x≥0,2x﹣6≥0,解得,x=3,第6页(共7页)则y=4,当腰为3,底边为4时,三角形的周长为:3+3+4=10,当腰为4,底边为3时,三角形的周长为:3+4+4=11,答:此三角形的周长为10或11.13.(2015春•武昌区期中)已知a、b、c满足+|a﹣c+1|=+,求a+b+c的平方根.【解答】解:由题意得,b﹣c≥0且c﹣b≥0,所以,b≥c且c≥b,所以,b=c,所以,等式可变为+|a﹣b+1|=0,由非负数的性质得,,解得,所以,c=2,a+b+c=1+2+2=5,所以,a+b+c的平方根是±.14.(2015秋•宜兴市校级期中)若a、b为实数,且,求.【解答】解:根据题意得:,解得:b=7,则a=3.则原式=|a﹣b|=|3﹣7|=4.15.(2015春•荣县校级月考)已知y<++3,化简|y﹣3|﹣.【解答】解:根据题意得:,解得:x=2,则y<3,则原式=3﹣y﹣|y﹣4|=3﹣y﹣(4﹣y)=﹣2y﹣1.16.(2014春•富顺县校级期末)已知a、b满足等式.(1)求出a、b的值分别是多少?(2)试求的值.【解答】解:(1)由题意得,2a﹣6≥0且9﹣3a≥0,解得a≥3且a≤3,所以,a=3,b=﹣9;第7页(共7页)(2)﹣+,=﹣+,=6﹣9﹣3,=﹣6.17.(2014秋•宝兴县校级期末)已知实数a满足+=a,求a﹣20082的值是多少?【解答】解:∵二次根式有意义,∴a﹣2009≥0,即a≥2009,∴2008﹣a≤﹣1<0,∴a﹣2008+=a,解得=2008,等式两边平方,整理得a﹣20082=2009.