高等数学教案ch-8.1-多元函数的基本概念

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共8页§81多元函数的基本概念一、平面点集n维空间1.平面点集由平面解析几何知道当在平面上引入了一个直角坐标系后平面上的点P与有序二元实数组(xy)之间就建立了一一对应于是我们常把有序实数组(xy)与平面上的点P视作是等同的这种建立了坐标系的平面称为坐标平面二元的序实数组(xy)的全体即R2RR{(xy)|xyR}就表示坐标平面坐标平面上具有某种性质P的点的集合称为平面点集记作E{(xy)|(xy)具有性质P}例如平面上以原点为中心、r为半径的圆内所有点的集合是C{(xy)|x2y2r2}如果我们以点P表示(xy)以|OP|表示点P到原点O的距离那么集合C可表成C{P||OP|r}邻域设P0(x0y0)是xOy平面上的一个点是某一正数与点P0(x0y0)距离小于的点P(xy)的全体称为点P0的邻域记为U(P0即}|||{),(00PPPPU或})()(|),{(),(20200yyxxyxPU邻域的几何意义U(P0)表示xOy平面上以点P0(x0y0)为中心、0为半径的圆的内部的点P(xy)的全体点P0的去心邻域记作),(0PU即}||0|{),(00PPPPU注如果不需要强调邻域的半径则用U(P0)表示点P0的某个邻域点P0的去心邻域记作)(0PU点与点集之间的关系任意一点PR2与任意一个点集ER2之间必有以下三种关系中的一种(1)内点如果存在点P的某一邻域U(P)使得U(P)E则称P为E的内点(2)外点如果存在点P的某个邻域U(P)使得U(P)E则称P为E的外点(3)边界点如果点P的任一邻域内既有属于E的点也有不属于E的点则称P点为E的边点E的边界点的全体称为E的边界记作E第2页共8页E的内点必属于EE的外点必定不属于E而E的边界点可能属于E也可能不属于E聚点如果对于任意给定的0点P的去心邻域),(PU内总有E中的点则称P是E的聚点由聚点的定义可知点集E的聚点P本身可以属于E也可能不属于E例如设平面点集E{(xy)|1x2y22}满足1x2y22的一切点(xy)都是E的内点满足x2y21的一切点(xy)都是E的边界点它们都不属于E满足x2y22的一切点(xy)也是E的边界点它们都属于E点集E以及它的界边E上的一切点都是E的聚点开集如果点集E的点都是内点则称E为开集闭集如果点集的余集Ec为开集则称E为闭集开集的例子E{(xy)|1x2y22}闭集的例子E{(xy)|1x2y22}集合{(xy)|1x2y22}既非开集也非闭集连通性如果点集E内任何两点都可用折线连结起来且该折线上的点都属于E则称E为连通集区域(或开区域)连通的开集称为区域或开区域例如E{(xy)|1x2y22}闭区域开区域连同它的边界一起所构成的点集称为闭区域例如E{(xy)|1x2y22}有界集对于平面点集E如果存在某一正数r使得EU(Or)其中O是坐标原点则称E为有界点集无界集一个集合如果不是有界集就称这集合为无界集例如集合{(xy)|1x2y22}是有界闭区域集合{(xy)|xy1}是无界开区域集合{(xy)|xy1}是无界闭区域2n维空间设n为取定的一个自然数我们用Rn表示n元有序数组(x1x2xn)的全体所构成的集合即RnRRR{(x1x2xn)|xiRi12n}Rn中的元素(x1x2xn)有时也用单个字母x来表示即x(x1x2xn)当所有的xi(i12n)都为零时称这样的元素为Rn中的零元记为0或O在解析几何中通过直角坐标R2(或R3)中的元素分别与平面(或空间)中的点或向量建立一一对应因而Rn中的元素x(x1x2xn)也称为Rn中的一个点或一个n维向量xi称为点x的第i个坐标或n维向量x的第i个分量特别地Rn中的零元0称为Rn中的坐标原点或n维零向量为了在集合Rn中的元素之间建立联系在Rn中定义线性运算如下第3页共8页设x(x1x2xn)y(y1y2yn)为Rn中任意两个元素R规定xy(x1y1x2y2xnyn)x(x1x2xn)这样定义了线性运算的集合Rn称为n维空间Rn中点x(x1x2xn)和点y(y1y2yn)间的距离记作(xy)规定2222211)()()(),(nnyxyxyxyx显然n123时上述规定与数轴上、直角坐标系下平面及空间中两点间的距离一至Rn中元素x(x1x2xn)与零元0之间的距离(x0)记作||x||(在R1、R2、R3中通常将||x||记作|x|)即22221||||nxxxx采用这一记号结合向量的线性运算便得),()()()(||||2222211yxyxnnyxyxyx在n维空间Rn中定义了距离以后就可以定义Rn中变元的极限设x(x1x2xn)a(a1a2an)Rn如果||xa||0则称变元x在Rn中趋于固定元a记作xa显然xax1a1x2a2xnan在Rn中线性运算和距离的引入使得前面讨论过的有关平面点集的一系列概念可以方便地引入到n(n3)维空间中来例如设a(a1a2an)Rn是某一正数则n维空间内的点集U(a){x|xRn(xa)}就定义为Rn中点a的邻域以邻域为基础可以定义点集的内点、外点、边界点和聚点以及开集、闭集、区域等一系列概念二多元函数概念例1圆柱体的体积V和它的底半径r、高h之间具有关系Vr2h这里当r、h在集合{(rh)|r0h0}内取定一对值(rh)时V对应的值就随之确定例2一定量的理想气体的压强p、体积V和绝对温度T之间具有关系RTPV第4页共8页其中R为常数这里当V、T在集合{(VT)|V0T0}内取定一对值(VT)时p的对应值就随之确定例3设R是电阻R1、R2并联后的总电阻由电学知道它们之间具有关系2121RRRRR这里当R1、R2在集合{(R1R2)|R10R20}内取定一对值(R1R2)时R的对应值就随之确定定义1设D是R2的一个非空子集称映射fDR为定义在D上的二元函数通常记为zf(xy)(xy)D(或zf(P)PD)其中点集D称为该函数的定义域xy称为自变量z称为因变量上述定义中与自变量x、y的一对值(xy)相对应的因变量z的值也称为f在点(xy)处的函数值记作f(xy)即zf(xy)值域f(D){z|zf(xy)(xy)D}函数的其它符号zz(xy)zg(xy)等类似地可定义三元函数uf(xyz)(xyz)D以及三元以上的函数一般地把定义1中的平面点集D换成n维空间Rn内的点集D映射fDR就称为定义在D上的n元函数通常记为uf(x1x2xn)(x1x2xn)D或简记为uf(x)x(x1x2xn)D也可记为uf(P)P(x1x2xn)D关于函数定义域的约定在一般地讨论用算式表达的多元函数uf(x)时就以使这个算式有意义的变元x的值所组成的点集为这个多元函数的自然定义域因而对这类函数它的定义域不再特别标出例如函数zln(xy)的定义域为{(xy)|xy0}(无界开区域)函数zarcsin(x2y2)的定义域为{(xy)|x2y21}(有界闭区域)二元函数的图形点集{(xyz)|zf(xy)(xy)D}称为二元函数zf(xy)的图形二元函数的图形是一张曲面例如zaxbyc是一张平面而函数z=x2+y2的图形是旋转抛物面三多元函数的极限与一元函数的极限概念类似如果在P(xy)P0(x0y0)的过程中对应的函数第5页共8页值f(xy)无限接近于一个确定的常数A则称A是函数f(xy)当(xy)(x0y0)时的极限定义2设二元函数f(P)f(xy)的定义域为DP0(x0y0)是D的聚点如果存在常数A对于任意给定的正数总存在正数使得当),(),(0PUDyxP时都有|f(P)A||f(xy)A|成立则称常数A为函数f(xy)当(xy)(x0y0)时的极限记为Ayxfyxyx),(lim),(),(00或f(xy)A((xy)(x0y0))也记作APfPP)(lim0或f(P)A(PP0)上述定义的极限也称为二重极限例4.设22221sin)(),(yxyxyxf求证0),(lim)0,0(),(yxfyx证因为2222222222|1sin||||01sin)(||0),(|yxyxyxyxyxyxf可见0取则当22)0()0(0yx即),(),(OUDyxP时总有|f(xy)0|因此0),(lim)0,0(),(yxfyx必须注意(1)二重极限存在是指P以任何方式趋于P0时函数都无限接近于A(2)如果当P以两种不同方式趋于P0时函数趋于不同的值则函数的极限不存在讨论函数000),(222222yxyxyxxyyxf在点(00)有无极限?提示当点P(xy)沿x轴趋于点(00)时00lim)0,(lim),(lim00)0,0(),(xxyxxfyxf第6页共8页当点P(xy)沿y轴趋于点(00)时00lim),0(lim),(lim00)0,0(),(yyyxyfyxf当点P(xy)沿直线ykx有22222022)0,0(),(1limlimkkxkxkxyxxyxkxyyx因此函数f(xy)在(00)处无极限极限概念的推广多元函数的极限多元函数的极限运算法则与一元函数的情况类似例5求xxyyx)sin(lim)2,0(),(解yxyxyxxyyxyx)sin(lim)sin(lim)2,0(),()2,0(),(yxyxyyxyx)2,0(),()2,0(),(lim)sin(lim122四多元函数的连续性定义3设二元函数f(P)f(xy)的定义域为DP0(x0y0)为D的聚点且P0D如果),(),(lim00),(),(00yxfyxfyxyx则称函数f(xy)在点P0(x0y0)连续如果函数f(xy)在D的每一点都连续那么就称函数f(xy)在D上连续或者称f(xy)是D上的连续函数二元函数的连续性概念可相应地推广到n元函数f(P)上去例6设f(x,y)sinx证明f(xy)是R2上的连续函数证设P0(x0y0)R20由于sinx在x0处连续故0当|xx0|时有|sinxsinx0|以上述作P0的邻域U(P0)则当P(xy)

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功