NCKU复合材料实验室.ppt

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

NCKU複合材料實驗室1利用有限元素與田口方法探討FCCSP構裝無鉛錫球之最佳化疲勞壽命InvestigationoftheFatigueLifeofLead-FreeSoldersforFlipChipChipScalePackagebyFiniteElementandTaguchiMethod南台科技大學副教授曾穗卿NCKU複合材料實驗室2報告流程緒論理論基礎模型建立與評估錫球疲勞壽命以SurfaceEvolver預測錫球形狀田口氏品質工程方法結論未來研究方向NCKU複合材料實驗室3前言晶粒尺寸封裝(ChipScalePackage,CSP),泛指以各種方式封裝後的IC,若封裝體邊長比內含的晶片邊長,大20%以內,或封裝體的面積內含晶片面積的1.5倍以內,都可稱之為CSP封裝。由於覆晶封裝具有良好電氣特性、高I/O接點密度,且能縮小IC尺寸增加每片晶圓產出,為未來極具潛力之構裝方式。錫球在覆晶晶粒尺寸封裝(FCCSP)構裝中之功能主要包含有傳電、導熱及吸收上下元件之膨脹差等,因此錫球的可靠度佔有極為重要之影響。錫球在室溫下已超過其熔點的一半,易有潛變現象。NCKU複合材料實驗室4研究動機與目的過去的封裝型態,多半以打線作為內部接合,但打線製程花費時間相當長,成為接合技術的最大瓶頸。許多高階、可攜式電子產品,需要使用高腳數、散熱性較佳,或較為輕薄短小的封裝,則需使用覆晶技術。本文採用氧化鋁陶瓷基板,由於緻密性高,對水分子滲透有優良的阻絕能力、強度良好、散熱性佳、與耐高壓性等優點,故被廣泛應用在需求高可靠度的IC構裝中。半導體產業唯有靠不斷地創新及研發,才能在激烈的競爭環境中繼續保有領先之地位,期望透過本研究能對業界有所幫助。NCKU複合材料實驗室5研究之方法本文以96.5Sn3.5Ag無鉛錫球與氧化鋁陶瓷基板之FCCSP封裝模式,建構在FR-4電路板上。先利用SurfaceEvolver預測錫球迴焊後之形狀,再引入ANSYS7.0有限元素分析軟體建立三維模型。採用葛拉佛拉-阿瑞尼阿斯潛變模式(Garofalo-ArrheniusCreep),透過3-D幾何模型的建立、網格分割及計算求解等步驟,進行分析模擬。探討不同材質的封裝結構在-20℃~110℃溫度循環下,錫球之疲勞壽命、應力應變及遲滯曲線等機械行為之變化情形。以等效潛變應變範圍代入ModifiedCoffin-Manson計算公式,預估錫球之疲勞壽命。NCKU複合材料實驗室6覆晶封裝製程晶圓進入機台前需確認是否受污染。以電鍍或印刷植球進行銲錫(或金塊)凸塊製程。之後需經迴焊(Reflow)製程,使錫球成型。凸塊完成後進行晶粒切割。然後由吸嘴吸住晶粒背面沾上助焊膏(FluxPaste),暫時將晶粒固定在基板上。置放完成後,進入迴焊爐內形成接合點。助焊膏的殘餘物須以清洗劑清除。此即所謂的C4(ControlledCollapseChipConnection),此一技術取代了傳統的打線接合。NCKU複合材料實驗室7可控塌陷晶片(F4)連接技術NCKU複合材料實驗室8覆晶的主要優點可降低晶片與基板間的電子訊號傳輸距離,適用在高速元件的封裝。可縮小晶片封裝後的尺寸,使得晶片封裝前後大小差不多。NCKU複合材料實驗室9本文討論之變形理論本文所採用之錫球為錫銀(96.5Sn3.5Ag)之材料。在高溫且恆溫狀態、穩態負載條件下具有潛變效應。同時承受反覆熱循環負載,使得材料進入塑性範疇。本文即討論潛變與塑性變形。NCKU複合材料實驗室10文獻回顧1996年S.M.Heinrich等以63Sn37Pb共晶錫球為分析模型。假設熔融狀態之錫球表面為以一等曲率圓弧,推導出一顯函數解析解,可精確地預測錫球於迴焊過程後之形狀。2000年Mertol等以有限元素法,模擬晶圓級封裝在溫度循環下應力、應變與變形,並使用田口式方法,探討設計參數對錫球的疲勞壽命之影響。2001年Pang以彈性、塑性、潛變之材料,探討覆晶構裝模型在溫度循環下,錫球之疲勞壽命。12CC12CC12CCNCKU複合材料實驗室11材料在室溫環境下發生潛變1.初始(暫態)潛變。2.穩態潛變,潛變過程時間最長,最主要的部份。3.加速潛變。因此通常以穩態潛變方程式描述潛變行為。本文以ANSYS7.0對96.5Sn3.5Ag無鉛錫球,以葛拉佛拉-阿瑞尼阿斯(Garofalo-Arrhenius)潛變模式進行分析。以探討構裝體在承受-20℃至110℃之熱循環負載時,所發生之錫球破壞行為。NCKU複合材料實驗室12葛拉佛拉-阿瑞尼阿斯潛變模式註1:σ單位採用MPa;T單位採用絕對溫度K。註2:C1及C2之參數值為溫度T之函數,其值會隨溫度而變化,而此處T是以絕對溫度K為單位。3412sinhexpCvonvondCCCdtT註1C1=18(553-T)/T,單位:1/secC2=1/(43.99-0.079T),單位:1/MPaC3=5.5C4=5802,單位:k註2NCKU複合材料實驗室13Tresca與vonMises降伏準則目前常用的兩種延性材料之破壞準則為特雷斯卡準則(TrescaYieldCriterion)及米澤斯降伏準則(vonMisesYieldCriterion)。由於特雷斯卡準則太過於保守,故本文選用米澤斯降伏準則為依據。NCKU複合材料實驗室14塑性行為模式本文選用德國vonMises所提出降伏準則為依據。依照此準則,當材料中每單位體積扭曲能量之最大值達到材料於拉伸試驗下所發生破壞之扭曲能量時,材料即開始破壞。米澤斯破壞準則在卡式座標分量下可表示為當式左項等於或大於右項時,則材料產生破壞,左項為材料之等效應變,右項為材料拉伸試驗下所發生之破壞應變。122222223[()()()()]2xyyzxzxyxyxyF23NCKU複合材料實驗室15多線性等向性硬化法則(MultilinearIsotropicHardening)錫球承受一循環熱應力,而發生降伏進入塑性行為區域時,降伏面會隨著熱循環中塑性應變之增加而改變。本文採用多線性等向硬化模式。理論上在某一溫度下,材料塑性行為應力與應變之關係,應為一光滑曲線,多線性等向硬化模式是以數個線段趨近此曲線。等向硬化是指材料在進入塑性變形以後,加載曲面在各方向呈現均勻向外擴張之現象。此模式中也假設材料受反方向壓縮負載降伏應力值等於拉伸降伏應力值,忽略包新格(Bauschinger)效應。(a)(b)NCKU複合材料實驗室16低循環疲勞壽命結構體承受反覆負載時,將形成循環應變與應力,即使應力小於材料本身的降服強度,亦會導致結構整體的破壞,稱之為疲勞破壞(Fatigue)。早期的研究著重高循環疲勞(N104)的探討,但低循環疲勞(N104)在工程上的應用也很重要,電子構裝的疲勞的破壞即為低循環疲勞破壞。其破壞位置通常發生於錫球最大的應變範圍處而非最大應變處。最常見的疲勞模型為Coffin-Manson公式。NCKU複合材料實驗室17Coffin-Manson疲勞壽命估算公式(共晶錫球)fN:疲勞壽命C:疲勞延展指數:總體剪應變範圍Δε:總體等效應變範圍f:疲勞延展係數f:循環頻率mT:平均循環錫球溫度)/1(2/21CffN3fTCm1ln1074.1106442.024NCKU複合材料實驗室18ModifiedCoffin-Manson疲勞壽命估算公式(無鉛錫球96.5Sn3.5Ag)2.4210.0466()fvonNf=0.325fTCm1ln1074.1106442.024=-0.41299f=24cycles/daymT=12minmaxTT)((-20+110)=4512=NCKU複合材料實驗室19介紹SurfaceEvolver德國數學教授KenBrakke在1989年首次寫出SurfaceEvolver程式軟體。SurfaceEvolver是一套利用能量法(Energy-BasedMethod)來分析液滴表面形狀的程式軟體。利用一系列的小三角形面積元素,以能量梯度下降法來計算熔融錫球表面張力的能量、重力位能及錫球固化體積改變所產生的外力能量,進而改變元素位置,使表面總能量達到平衡狀況的最小值而模擬出固化形狀。文中錫球固化形狀是由熔融錫球的表面張力及上下墊片之濕潤現象所控制,因此SurfaceEvolver適合模擬錫球迴銲過程後的形狀。NCKU複合材料實驗室20SurfaceEvolver模型建立錫球基本假設條件錫球材料為均質等向性。固化時錫球為靜態平衡。錫球固化時,錫球墊為圓形,且完全對準。融熔狀態的錫球,其表面輪廓為軸對稱。錫球表面的經線方向為圓弧線。錫球墊和錫球是完全接觸。錫球和銲墊為完全黏著。迴焊前後錫球之體積不變。NCKU複合材料實驗室21SurfaceEvolver分析流程先確立研究主題為罩幕定界(SolderMaskDefined,SMD)錫球。並建構錫球之幾何分析模型。指定輸入參數包括錫球體積、錫球密度、表面張力、外加負載、初始高度及錫球墊片半徑等因子。當執行SurfaceEvolver程式完畢之後,需檢查所得到之恢復力F值是否與外加負載F值(重力)一致。當恢復力與外加負載不一致時,則必須修正所輸入的錫球初始高度,一直至恢復力等於外加負載為止,則此時的高度即是錫球迴焊過程後之高度。NCKU複合材料實驗室22分析流程錫球之中心軸及座標原點(上)分析錫球形狀前先給定一初始形狀(右上)罩幕定界錫球於迴焊過程中之受力狀況(右下)NCKU複合材料實驗室23分析構裝體模型圖本文FCCSP分析模型為7.0mmX7.0mmX0.41mm之晶片,四週佈植有100個金凸塊。下接7.45mmX7.45mmX0.25mmAl2O3陶瓷基板。在晶片與基板間填膠,基板下面為10X10陣列之96.5Sn3.5Ag無鉛錫球,其接墊之直徑為0.3mm,間距為0.65mm。錫球下接8.0mmX8.0mmX1.0mm玻璃樹脂(EpoxyGlass)所製成之FR-4印刷電路板。NCKU複合材料實驗室24基板印刷電路板晶片錫銀凸塊填充底膠金凸塊FCCP模型圖NCKU複合材料實驗室25構裝體分析之基本假設構裝體所有材料皆為均質等向性,受拉與受壓行為相同。模型中所有界面皆為完全接觸(PerfectlyAdhesive)。模型內部的溫度與外界環境溫度相同,且假設溫度場不隨空間變化,即在瞬間皆已達平衡狀態,即(T(x,t)=T(t))。模型在初始狀態25℃時為應力自由狀態(StressFree),忽略製程中所產生之殘留應力(ResidualStress)。忽略錫球經過迴焊過程後所引起之材質變化。錫球之材料性質為潛變模式,其餘部分皆為彈性材料。NCKU複合材料實驗室26構裝體八分之一對稱模型為節省電腦模擬計算時間,由兩對角線的斷面上,截取分析結構右上半段,即八分之一對稱模型進行分析。邊界條件設定為Y軸上所有節點為對稱邊界條件。在模型結構左下端點(原點)設為固定點。以使分析模型受力變形後能自由翹曲,其餘邊界皆假設為自由端。兩對角線之兩面設為對稱面。NCKU複合材料實驗室27FCCSP構裝體八分之一對稱分析模型圖對稱面對稱面固定點對稱面分析區域NCKU複合材料實驗室28溫度循環負載施予構裝體-20℃低溫至110℃高溫之溫度循環負載。初始溫度由25℃開始,並假設為無應力狀態,在588秒內升至110℃。每一溫度循環為60分鐘,從低溫升至高溫(Up-Ramp)需時15分鐘,並在高溫區維持20分鐘之恆溫(Dwell)。再以15分鐘降溫至-20℃(Down-Ramp),然後再維持10分鐘之恆溫(Dwell),至此完成一個循環。共進行五次溫度循環負載,計須18,588秒。NCK

1 / 75
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功