复习:1、把下面各数省略万位后面的尾数,求出它们的近似数。986534587413120050047398010≈99万≈6万≈3万≈5万≈40万想一想:整数怎样求近似数?四舍五入法思考:2、下面的里可以填上哪些数?32645≈32万46045≈47万(0、1、2、3、4)(5、6、7、8、9)901000.984米豆豆的身高是0.984米:实际应用小数时,没有必要说出它的准确数,只要求它的近似数就可以了。同位讨论:0.984的近似数是多少呢?901000.984米0.984的近似数:0.984保留两位小数,看小数部分第三位。≈0.98保留到百分位,省略后面的尾数▲保留两位小数,试着写一写:小数部分的第三位是4应该舍去。0.984保留一位小数,看小数部分的第二位。≈1.0▲保留一位小数,试着写一写保留到十分位,省略后面的尾数。在表示近似数时,小数末尾的0不能去掉。8应该往前进一,而前一位是9,9加上1得10,满十又要向前一位进一,也就是要向个位进一。0.984小数部分的第一位是9,应该进一,也就是要向个位进一。≈1▲保留整数,试着写一写保留到个位,省略小数部分。保留整数,看小数部分的第一位。它们的近似数一样吗?如果不同,哪个近似数会更精确一些?在表示近似数时,1.0后面的“0”可以去掉吗?0.984≈1.00.984≈1小组讨论:1.0表示精确到十分位,1表示精确到个位,1.0的精确程度高?还是1的精确程度高?0.951.01.04近似数10.50.60.80.911.11.21.31.40.7保留一位小数是1.0,原来的长度在0.95与1.04之间。保留整数为1,原来的准确长度在0.5与1.4之间,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。.≈1.0近似数1.00.951.01.04.≈1所以保留一位小数是1.0,小数末尾的0,应当保留,不能去掉。进:0.5退:1.4进:0.95退:1.04讨论:哪个近似数会更精确哪些数的近似数是1?哪些数的近似数是1.0?求近似数时,保留整数,表示精确到保留一位小数,表示精确到保留两位小数,表示精确到……例1议一议练习练习二百分位十分位;个位;小结:想一想:求小数的近似数的方法是什么?应该注意什么?1、要根据题目的要求取近似值,如果保留整数,就看;要保留一位小数,就看;……然后按来决定是舍还是入。2、取近似值时,在保留的小数位里,小数末尾的0。注意:不能去掉十分位是几百分位是几“四舍五入法”如:6.0要比6精确.因为6.0表示精确到了()位,6表示精确到了()位,所以6.0后面的“0”不能丢掉。十分个1、求下面小数的近似数。(1)保留两位小数0.25612.0061.0987(2)精确到十分位3.720.589.05486682850.2612.011.103.70.69.12、选择:把3.995保留两位小数约等于()。①3.99②4.0③4.00保留()位小数,表示精确到十分位。①一位②两位③三位如果要求保留三位小数,表示精确到()位。①十分②百分③千分①③③4、下面各小数在哪两个相邻的整数之间?它们各近似于哪个整数?()6.49()()15.83()6715162、准确数大于近似数。1、2.0和2大小相等,精确度也相同。3、近似数是3的小数只有2.5、2.6、2.7、2.8、2.9。3、判断:×××5、按四舍五入法写出表中各小数的近似数。保留整数保留一位小数保留两位小数9.9560.9051.463109.961.460.910.91110.01.5拓展练习:1、用0、2、5、8和小数点“.”组成符合下列要求的小数。(1)近似数是3的小数。(2)近似数是5.2的小数。(3)近似数是0.26的小数。求下面各小数的近似数。(1)精确到十分位3.470.2394.08(2)省略百分位后面的尾数5.3446.2680.402全课小结你有哪些收获?在哪方面还需努力?