《高等数学)》第8章曲线积分第1页曲线积分一、第一类曲线积分1.设平面曲线L为下半圆周21xy,求Lsyxd)(22.解:曲线L:txcos,tysin,]2,[t,tsd1d,222dd)(tsyxL2.设一段锥面螺线L:txtcose,tytsine,tzeπ20t上点zyx,,处的线密度为2221,,zyxzyx,求该构件的质量.解:计算微分dttztytxds222)()()(dtetetetetettttt222)cossin()sincos(dtetetettt22222)sincos(2dtedtett332syxMLd),(6223d3e212202tett3.计算syLd2,其中L是抛物线2yx上点(0,0)与(1,1)之间一段弧.解:221:,[0,1],14Lyxxdsxdx,syLd2xxxd4122102xxxxxxd41882d41221021010322210413282)41(d4182xxx)155(122)15(12234.设一折线型构件占有xoy面上曲线弧L,L为连接点)0,2(A,)0,0(O与点)3,0(B的折线段,且在曲线L上点yx,处的线密度为33,yxyx,求该构件的质量.解:syxMLd),(,21LLL,1L是先沿直线从点)0,2(A到点)0,0(O,1L:0y,02:x,4d01)0(d)(d),(2033311xxsyxsyxLL2L是沿直线点从)0,0(O到点)3,0(B,2L:0x,30:y,481d01)0(d)(d),(3033322yysyxsyxLL,syxMLd),(49744815.计算dseLyx22,其中L是由cos,sin,[0,]4xatyatt.《高等数学)》第8章曲线积分第2页解::cos,sin,[0,],4Lxatyattdsadt.224044xyaaaLaedseadtaee.二、第二类曲线积分6.设一质点在力Fyixj的作用下,沿圆周cos,sinxRtyRt上由10t到22t的一段弧移动作的功W.解L为:cossinxRtyRt.:02t.sindxRtdt,cosdyRtdt,20sin(sin)coscosLydxxdyRtRtdtRtRtdt22222200sincoscos2RttdtRtdt2201sin202Rt7.计算3dLxyy,其中L是抛物线2xy上从点)0,0(到点)1,1(的一段弧.解:L:2xy,:01x,2dyxdx,3dLxyy13202dxxxx1702277x8.计算Lyxyxyxd)(d)(,其中(1)L是先沿直线从点)1,1(到点)2,1(,然后再沿直线到点)2,4(的折线.(2)L是抛物线xy2上从点)1,1(到点)2,4(的一段弧解:(1)1L是先沿直线从点)1,1(到点)2,1(,1L:1x,21:y,21d)1(0)1(d)(d)(211yyyyxyxyxL2L是沿直线点从)2,1(到点)2,4(,2L:2y,41:x,227d)2(d)(d)(412xxyxyxyxL,Lyxyxyxd)(d)(=1421227(2)3L:2yx,21:y,Lyxyxyxd)(d)(21232122d)2(d)(d2)(yyyyyyyyyyy334)213121(21234yyy9.设有一平面力场iyaxF22,将一质点沿曲线L:222)(ayax0a从点aa,移动到点0,2a所作的功1W,求a.解:曲线L:taaxcos,taysin,02:t,《高等数学)》第8章曲线积分第3页W1d)sin()(]d[302222attaaxyaxL,1a10.设一质点在力kxjziyF的作用下,从点A2,1,0沿直线段移动到点B5,3,2,求力F作的功W.解:直线AB的方程为:32212zyx,23,12,2tztytx,点A2,1,0对应0t,点B5,3,2对应1t,10:t,W1432d2)23(d2)12(ddd10dttttttzxyzxyL三、格林公式及积分与路径无关11.计算422(23)d()dLxxyyxxyy,其中L是曲线222xyy取顺时针方向.解:4(,)23Pxyxxyy,22(,)Qxyxy,23Pxy,2Qxx,422(23)d()dLxxyyxxyy()DQPdxy3333DDdd12.计算曲线积分[esin2]d(ecos)dxxLIyxxyxy,其中L为曲线21yx上点(1,0)A沿逆时针方向到点(1,0)B的一段弧.解:cosxPeyy,cos1xQeyx,QxPy,用格林公式,添加直线段BA,形成封闭曲线L[esin2]d(ecos)dxxLyxxyxy(1)1DDdd2直线段BA:0y,:11x,BA[esin2]d(ecos)dxxyxxyxy1120xdxLLBA213.设L222xyx,逆时针方向,求sindcosdLyxxxy.解:(,)sin,(,)cosPxyyxQxyx,sinPxyxQ,所以曲线积分与路径无关,sindcosdLyxxxy014.设一变力在坐标轴上投影42323,4XxyyYxxy,这力确定了一个力场.证明(1)质点在此场内移动时场力所作的功与路径无关;(2)求质点从点)0,1(A移动到点(2,1)B,该变力所作的功.解:功423(23)d(4)dLWxyyxxxyy,其中423(,)23,(,)4PxyxyyQxyxxy,《高等数学)》第8章曲线积分第4页324PxyyxQ,因为yPxQ,所以曲线积分与路径无关.即场力所作的功与路径无关.(2)求质点从点)0,1(A移动到点(2,1)B,该变力所作的功.选择折线段AOBAO:0,:12,0yxdy,4231(23)d(4)dAOWxyyxxxyy2133dxOB:2,:01,d0xyx,4232(23)d(4)dOBWxyyxxxyy113400(48)(42)2ydyyy12515.计算2()d(sin)dLxyxxyy,其中L为圆周22yxx上由点(0,0)O到点(1,1)B的一段弧.解2(,)Pxyxy(,)sinQxyxy,1QxPy.积分与路径无关.添加直线段OA:0,:01yx,AB:1,:01xy.120()d(sin)d(1sin)dABxyxxyyyy10(cos)cos12yy2()d(sin)dOAxyxxyy1312001d()33xxx2()d(sin)dLOAABxyxxyyL15cos12cos13316.设L为由0,2,0,3xxyy所围成的逆时针方向的封闭折线,求xydydxyL2)1(2.解:2Pyy,2Qyx,所以曲线积分与路径无关,2(1)d2dLyxxyy017.求)0,2((0,0)dsindcoseyyxyx.解:sinxPeyyxQ,所以曲线积分与路径无关.选择线段OA0,:02yx)0,2((0,0)dsindcoseyyxyx22OA0ecosdsind1xxyxyyedxe18.设L为圆域xyxD2:22的正向边界,求dyyxdxyxL)()(33.解:1yP,1xQ,dyyxdxyxL)()(33(11)22Dd