2016-2017学年陕西省西安市长安一中高二(下)期中数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知(x+i)(1﹣i)=y,则实数x,y分别为()A.x=﹣1,y=1B.x=﹣1,y=2C.x=1,y=1D.x=1,y=22.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:上不单调,则t的取值范围是.14.如果一条直线与一个平面垂直,则称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是;15.设1<x<2,则,()2,的大小关系是(用“<”连接)16.设O是坐标原点,AB是圆锥曲线的一条不经过点O且不垂直于坐标轴的弦,M是弦AB的中点,KAB,KOM分别表示直线AB,OM的斜率,在圆x2+y2=r2中,KAB•KOM=﹣1,在椭圆+=1(a>b>0)中,类比上述结论可得.三、解答题(本大题共6小题,共70分,解答题应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣sinA)cosB=0.(1)求角B的大小;(2)若a+c=1,求b的取值范围.18.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.19.如图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)20.设数列{an}的前n项和为Sn,且方程x2﹣anx﹣an=0有一根为Sn﹣1,n=1,2,3,….(Ⅰ)求a1,a2;(Ⅱ){an}的通项公式.21.如图,椭圆=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=.(Ⅰ)求椭圆方程;(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF2的中点,求证:∠ATM=∠AF1T.22.已知函数f(x)=(x+1)lnx﹣x+1.(Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范围;(Ⅱ)证明:(x﹣1)f(x)≥0.2016-2017学年陕西省西安市长安一中高二(下)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知(x+i)(1﹣i)=y,则实数x,y分别为()A.x=﹣1,y=1B.x=﹣1,y=2C.x=1,y=1D.x=1,y=2【考点】A2:复数的基本概念;A5:复数代数形式的乘除运算.【分析】按多项式乘法运算法则展开,化简为a+bi(a,b∈R)的形式,利用复数相等求出x、y即可.【解答】解:考查复数的乘法运算.可采用展开计算的方法,得(x﹣i2)+(1﹣x)i=y,没有虚部,即,解得:x=1,y=2.故选D.2.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:,即(x﹣2)2+y2=4,所以点的轨迹是以(2,0)为圆心,2为半径的圆,所以点P的轨迹所包围的图形的面积等于4π,故选B.9.设a>0,对于函数f(x)=,下列结论正确的是()A.有最大值而无最小值B.有最小值而无最大值C.有最大值且有最小值D.既无最大值又无最小值【考点】3H:函数的最值及其几何意义.【分析】换元:令t=sinx,t∈(0,1],函数转化为,t∈(0,1],通过研究关于t的函数,的单调性与值域,可以得出原函数为上的单调减函数,从而得出正确答案.【解答】解:令t=sinx,t∈(0,1],则函数的值域为函数,t∈(0,1],的值域,又∵a>0,∴,t∈(0,1],是一个减函减.当t=1时函数有最小值1+a,函数无最大值.故选B.10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈.人们还用过一些类似的近似公式.根据π=3.14159…..判断,下列近似公式中最精确的一个是()A.d≈B.d≈C.d≈D.d≈【考点】F7:进行简单的演绎推理.【分析】根据球的体积公式求出直径,然后选项中的常数为,表示出π,将四个选项逐一代入,求出最接近真实值的那一个即可.【解答】解:由V=,解得d=设选项中的常数为,则π=选项A代入得π==3.375;选项B代入得π==3;选项C代入得π==3.14;选项D代入得π==3.142857由于D的值最接近π的真实值故选D.11.函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex•f(x)>ex+1的解集为()A.{x|x>0}B.{x|x<0}C.{x|x<﹣1,或x>1}D.{x|x<﹣1,或0<x<1}【考点】3F:函数单调性的性质;63:导数的运算.【分析】构造函数g(x)=ex•f(x)﹣ex,结合已知可分析出函数g(x)的单调性,结合g(0)=1,可得不等式ex•f(x)>ex+1的解集.【解答】解:令g(x)=ex•f(x)﹣ex,则g′(x)=ex•∵对任意x∈R,f(x)+f′(x)>1,∴g′(x)>0恒成立即g(x)=ex•f(x)﹣ex在R上为增函数又∵f(0)=2,∴g(0)=1故g(x)=ex•f(x)﹣ex>1的解集为{x|x>0}即不等式ex•f(x)>ex+1的解集为{x|x>0}故选A12.已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.【考点】KG:直线与圆锥曲线的关系.【分析】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.【解答】解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),由⇒y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y2=2,结合及,得,∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO═×2×(y1﹣y2)+×y1,=.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=﹣+4x﹣3lnx在上不单调,则t的取值范围是0<t<1或2<t<3.【考点】6B:利用导数研究函数的单调性.【分析】先由函数求f′(x)=﹣x+4﹣,再由“函数在上不单调”转化为“f′(x)=﹣x+4﹣=0在区间上有解”从而有在上有解,进而转化为:g(x)=x2﹣4x+3=0在上有解,用二次函数的性质研究.【解答】解:∵函数∴f′(x)=﹣x+4﹣∵函数在上不单调,∴f′(x)=﹣x+4﹣=0在上有解∴在上有解∴g(x)=x2﹣4x+3=0在上有解∴g(t)g(t+1)≤0或∴0<t<1或2<t<3.故答案为:0<t<1或2<t<3.14.如果一条直线与一个平面垂直,则称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是36;【考点】LJ:平面的基本性质及推论.【分析】先考虑6个表面,每一个表面有四条棱与之垂直;再考虑6个对角面,每个对角面又有两条面对角线与之垂直.【解答】解:正方体中,每一个表面有四条棱与之垂直,六个表面,共构成24个“正交线面对”;而正方体的六个对角截面中,每个对角面又有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”;故答案为36.15.设1<x<2,则,()2,的大小关系是()2<<(用“<”连接)【考点】71:不等关系与不等式.【分析】构造函数,f(x)=x﹣lnx,利用导数比较得到0<<1,再比较即可.【解答】解:令f(x)=x﹣lnx(1<x<2),则f′(x)=1﹣=>0,∴函数y=f(x)(1<x<2)为增函数,∴f(x)>f(1)=1>0,∴x>lnx>0∴0<<1,∴()2<,∵﹣==>0∴()2<<故答案为:()2<<16.设O是坐标原点,AB是圆锥曲线的一条不经过点O且不垂直于坐标轴的弦,M是弦AB的中点,KAB,KOM分别表示直线AB,OM的斜率,在圆x2+y2=r2中,KAB•KOM=﹣1,在椭圆+=1(a>b>0)中,类比上述结论可得若AB是圆锥曲线的一条不经过点O且不垂直于坐标轴的弦,M是弦AB的中点,则.【考点】KJ:圆与圆锥曲线的综合.【分析】本题考查的知识点是类比推理,由圆的性质类比猜想椭圆的类似性质,一般的思路是:点到点,线到线,直径到直径等类比后的结论应该为关于椭圆的一个类似结论.【解答】解:定理:如果圆x2+y2=r2(r>0)上异于一条直径两个端点的任意一点与这条直径两个端点连线的都斜率存在,则这两条直线的斜率乘积为定值﹣1,即kABkOM=﹣1.运用类比推理,写出该定理在椭圆+=1(a>b>0)中的推广:若AB是圆锥曲线的一条不经过点O且不垂直于坐标轴的弦,M是弦AB的中点,则kABkOM=﹣.故答案为:若AB是圆锥曲线的一条不经过点O且不垂直于坐标轴的弦,M是弦AB的中点,则.三、解答题(本大题共6小题,共70分,解答题应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣sinA)cosB=0.(1)求角B的大小;(2)若a+c=1,求b的取值范围.【考点】HR:余弦定理;GP:两角和与差的余弦函数.【分析】(1)已知等式第一项利用诱导公式化简,第二项利用单项式乘多项式法则计算,整理后根据sinA不为0求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(2)由余弦定理列出关系式,变形后将a+c及cosB的值代入表示出b2,根据a的范围,利用二次函数的性质求出b2的范围,即可求出b的范围.【解答】解:(1)由已知得:﹣cos(A+B)+cosAcosB﹣sinAcosB=0,即sinAsinB﹣sinAcosB=0,∵sinA≠0,∴sinB﹣cosB=0,即tanB=,又B为三角形的内角,则B=;(2)∵a+c=1,即c=1﹣a,cosB=,∴由余弦定理得:b2=a2+c2﹣2ac•cosB,即b2=a2+c2﹣ac=(a+c)2﹣3ac=1﹣3a(1﹣a)=3(a﹣)2+,∵0<a<1,∴≤b2<1,则≤b<1.18.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.【考点】LS:直线与平面平行的判定;MI:直线与平面所成的角.【分析】(Ⅰ)先取AA1的中点M,连接EM,BM,根据中位线定理可知EM∥AD,而AD⊥平面ABB1A1,则EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,则∠EBM直线BE与平面ABB1A1所成的角,设正方体的棱长为2,则EM=AD=2,BE=3,于是在Rt△BEM中,求出此角的正弦值即可.(Ⅱ)在棱C1D1上存在点F,使B1F平面A1BE,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1∥B1C1∥BC,且A1D