实变函数与泛函分析基础第四章习题答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Vb’kÆ9mAd/k%&$1.Pf(x)E_uB/krh#[Ekr,5E[fr]B\.5E[f=r]Bvf(x)h)B’#℄#[Ekr,E[fr]B#[dkα,:{rn}hαTEkE[fa]=∞Sn=1E[frn],E[frn]BE[fα]hBnf(x)hE_B/k℄#[Ekr,E[f=r]Bf(x)hBG\E=(−∞,∞),zh(−∞,∞)B5#[x∈z,f(x)=√3;x6∈z,f(x)=√2,#[Ekr,E[f=r]=∅hB%E[f√2]=zhBfhB2.‘f(x),fn(x)(n=1,2,···)hW;[a,b]_d/kkuki∞\k=1limn→∞E|fn−f|1khEefn(x)jJf(x)5’#‘AuEfnjJ5#[x∈A,[k,N,enN|fn(x)−f(x)|1k,x∈limn→∞E|fn−f|1k.k[|x∈∞\k=1limn→∞E|fn−f|1k.#[x∈∞Tk=1limn→∞E|fn−f|1k,#[ǫ0,k0,e1k0ǫ,x∈limn→∞Eh|fn−f|1k0iBN,enNx∈Eh|fn−f|1k0i,7|fn(x)−f(x)|1k0ǫ,nlimn→∞fn(x)=f(x),7x∈A.nA=∞\k=1limn→∞E|fn−f|1k.3.‘{fn}uE_B/kKPojJ5Æ&^5!hB’#§1E6,limn→∞fn(x)0limn→∞fn(x)!hE_B/kyZE[limn→∞fn=+∞]hfnjJ+∞n5E[limn→∞fn=−∞]hfnjJ−∞n5E[limn→∞fnlimn→∞fn]hfnjJn5fn(x)E_jJn5uE−F[limn→∞fn=+∞]−E[limn→∞fn=−∞]−E[limn→∞fnlimfn].1%hB5%&^5uE[limn→∞fn=+∞]∪E[limn→∞fn=−∞]∪E[limn→∞fnlimn→∞fn]hB54.‘Eh[0,1]B5Mf(x)=(x,x∈E,−x,x∈[0,1]−E.vf(x)[0,1]_h)B|f(x)|h)B!f(x)B℄0∈E,E[f≥0]=EB℄06∈E,E[f0]=EBnf(x)Bx∈[0,1]|f(x)|=xhI~/kn|f(x)|[0,1]_hB5.‘fn(x)(n=1,2,···)hE_a.e.zB/kK%|fn|a.e.jJz/kf.#[ǫ0ÆkcÆB5E0⊂E,m(E\E0)ǫ,eE0_#Tn|fn(x)|≤c.FmE∞.’#pE[|fn|=∞],E[fn6→f]!hL5n=0,1,2,···.ME1=E[fn6→f]∪(∞Sn=0E[|fn|=∞]),mE1=0.E−E1_fn(x)!zUjJf(x).ME2=E−E1,[x∈E2,supn|fn(x)|∞.E2=∞[k=1E2[supn|fn|≤k],E2[supn|fn|≤k]⊂E2[supn|fn|≤k+1].nmE2=limk→∞mE2[supn|fn|≤k].k0emE2−mE2[supn|fn|≤k0]ǫ.ME0=E2[supn|fn|≤k0],c=k0.E0_#[n,|fn(x)|≤c,%m(E−E0)=m(E−E2)+m(E2−E0)ǫ.6.‘f(x)h(−∞,∞)_I~/kg(x)u[a,b]_B/kf(g(x))hB/k’#:E1=(−∞,∞),E2=[a,b].f(x)E1_I~-#[dkc,E1[fc]h{_5‘E1[fc]=∞Sn=1(αn,βn),S(αn,βn)hS,W;(BQhz+αnBQu−∞,βnBQu+∞).E2[f(g)c]=∞Sn=1E2[αngβn]=∞Sn=1(E2[gαn]∩E2[gβn]),ugE2_BE2[gαn],E2[gβn]!B-E[f(g)c]B7.‘/kKfn(x),(n=1,2,···)=5E_”3_”jJf(x),P{fn}a.e.jJf.’#ufn(x)E_”3_”jJf(x),n#[δ0,B5Eδ⊂E,em(E−Eδ)δ%fnEδ_jJf(x).‘E0hEfnjJYq#[δ,E0⊂E−Eδ(uEδ_fnjJ),nmE0≤m(E−E0)δ,Mδ→0,mE0=0.nfn(x)E_a.e.jJf(x)(=r).28.iNEREH’#NEREuf(x)hE_/k#[δ0,5Eδ⊂Eef(x)Eδ_hI~/kUm(E−Eδ)δ,f(x)hE_a.e.zB/k#[1/n,5En⊂E,ef(x)En_I~Um(E−En)1n.ME0=E−∞Sn=1En,#[n,mE0=m(E−∞Sn=1En)≤m(E−En)1n.Mn→∞,mE0=0.E=(E−E0)∪E0=(∞Sn=1En)∪E0=∞Sn=0En.#[dka,E[fa]=E0[fa]∪(∞Sn=1En[fa]),fEn_I~BEn[fa]B%m∗(E0[fa])≤m∗E0=0,nE0[fa]B%E[fa]hBfhBufEn_z-∞Sn=1En_znf(x)a.e.z9.‘/kK{fn}E_jJf,Ufn(x)≤g(x)a.e.E,n=1,2,···.if(x)≤g(x)E_82H’#ufn(x)⇒f(x),{fni}⊂{fn},efni(x)E_a.e.jJf(x).‘E0hfni(x)jJf(x)5En=E[fng].mE0=0,mEn=0.m(∞Sn=0En)≤∞Pn=0mEn=0.E−∞Sn=0En_fni(x)≤g(x),fni(x)jJf(x),nf(x)=limfni(x)≤g(x)E−∞Sn=0En_H7f(x)≤g(x)E_82H10.‘E_fn(x)⇒f(x),Ufn(x)≤fn+1(x)82Hn=1,2,···,82fn(x)jJf(x).’#ufn(x)⇒f(x),{fni}⊂{fn},efni(x)E_a.e.jJf(x).‘E0hfni(x)jJf(x)5En=E[fnfn+1],mE0=0,mEn=0.m(∞[n=0En)≤∞Xn=0mEn=0E−∞Sn=0En_fni(x)jJf(x),Ufn(x)hfn(x)jJf(x).(}KKjJ}KajJs4z).7X+L5∞Sn=0Entfn(x)jJf(x),?hfn(x)a.e.jJf(x).11.‘E_fn(x)⇒f(x),%fn(x)=gn(x)a.e.Hn=1,2,···,gn(x)⇒f(x).’#‘En=E[fn6=gn]m(∞Sn=1En)≤∞Pn=1mEn=0.#[σ0,E[|f−gn|≥σ]⊂(∞Sn=1En)∪E[|f−fn|≥σ].nmE[|f−gn|≥σ]≤m(∞[n=1En)+mE[|f−fn|≥σ]=mE[|f−fn|≥σ].3ufn(x)⇒f(x),n0≤limmE[|f−gn|≥σ]≤limmE[|f−fn|]≥σ=07gn(x)⇒f(x).12.‘mE+∞,PE_fn(x)⇒f(x)rh#{fn}[1/kK{fnk},{fnk}/kK{fnkj},elimj→∞fnkj(x)=f(x),a.e.E.’#|DlEH7Bw(|℄{fn(x)}E_jJf(x).η00,ekK{mE[|fn−f|≥η0]}jJL-kǫ00,6/kK{fnk},emE[|fnk−f|≥η0]ǫ00.(1)/kK{fnk}82jJf(x)/kKgd_℄/kK{fnkj}E_a.e.jJf,mE+∞,C*EE_fnkj⇒f(x),Æ(1)fO$13.‘mE∞,82zB/kKfn(x)0gn(x),n=1,2,···,(jJf(x)0g(x),P(1)fn(x)gn(x)⇒f(x)g(x);(2)fn(x)+gn(x)⇒f(x)+g(x);(3)min{fn(x),gn(x)}⇒min{f(x),g(x)};max{fn(x),gn(x)}⇒max{f(x),g(x)}.’#(1)f(x)a.e.znmE[|f|=∞]=0.∞Tn=0E[|f|≥n]=E[|f|=∞],UE[|f|≥n]⊃E[|f|≥n+1]0E[|f|≥1]⊂E,mE[|f|≥1]≤mE∞,nmE[|f|=∞]=limn→∞mE[|f|≥n]=0.sElimn→∞mE[|g|≥n]=0.#[ǫ0,σ0,k,mE[|f|≥k]ǫ50mE[|g|≥k]ǫ5sHMσ0=minσ2(k+1),1,fn⇒f,gn⇒g,N,enNmE[|gn−g|≥σ0]ǫ5,mE[|fn−f|≥σ0]ǫ5sHE[|gn|≥k+1]⊂E[|g|≥k]∪E[|gn−g|≥1]⊂E[|g|≥k]∪E[|gn−g|≥σ0].mE[|gn|≥k+1]≤mE[|g|≥k]+mE[|gn−g|≥σ0]ǫ5+ǫ5=2ǫ5.Eh|gnfn−gnf|≥σ2i⊂E[|gn|≥k+1]∪E|fn−f|≥σ2(k+1)⊂E[|gn|≥k+1]∪E[|fn−f|≥σ0].nmEh|gnfn−gnf|≥σ2i≤mE[|gn|≥k+1]+mE[|fn−f|≥σ0]2ǫ5+ǫ5=3ǫ5.%Eh|fgn−fg|≥σ2i⊂E[|f|≥k+1]∪E|gn−g|≥σ2(k+1)⊂E[|f|≥k]∪E[|gn−g|≥σ0].4nmEh|fgn−fg|≥σ2i≤mE[|f|≥k]+mE[|gn−g|≥σ0]ǫ5+ǫ5=2ǫ5.E[|gnfn−gf|≥σ]⊂Eh|gnfn−gnf|≥σ2i∪Eh|fgn−fg|≥σ2i,nmE[|gnfn−gf|≥σ]≤mEh|gnfn−gnf|≥σ2i+mEh|fgn−fg|≥σ2i3ǫ5+2ǫ5=ǫ.7#[ǫ0,σ0,N,enNmE[|gnfn−gf|≥σ]ǫ,ngnfn⇒gf.(2)E[|(fn+gn)−(f+g)|≥σ]⊂Eh|fn−f|≥σ2i∪Eh|gn−g|≥σ2inmE[|(fn+gn)−(f+g)|≥σ]≤mEh|fn−f|≥σ2i+mEh|gn−g|≥σ2i,limn→∞mE[|(fn+gn)−(f+g)|≥σ]≤limn→∞mEh|fn−f|≥σ2i+limn→∞mEh|gn−g|≥σ2i.7fn+gn⇒f+g.(3)x℄fn⇒f,|fn|⇒|f|.gd_E[|fn−f|≥σ]⊃E[||fn|−|f||≥σ].nlimn→∞mE[||fn|−|f||≥σ]≤limn→∞mE[|fn−f|≥σ]=0,7|fn|⇒|f|.℄fn⇒f,#[a6=0,afn⇒af.gd_E[|afn−af|≥σ]=E|fn−f|≥σ|a|,nlimn→∞mE[|afn−af|≥σ]=limn→∞mE|f

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功