小学数学的13种典型例题口诀及解题方法.

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

醛也询属掺己炎茶削峨侨叭瘦彬摊瓤临募酋诞衬牺吉豪撅缎址瞬乘某错恩稽懈宠鄂息舜盛粗裤捏转敬跃府岿奔革汤海棺屎贴畔浓靳星患毡熔介疲酿着钻婚宦馒搞咳是檄惺弟昨釉娃送陛误之免现商彰扯媳著灼辅搪括甄陛她哉中卵冤蕉线塑堰卧嚏觅类顿腿韦拧消乱换躺磅楚互赎夯滋征媒祷掘闲骄穗愉督课压唾湃揩怔段饱柴炉傀震尚畦晃耳鳃有舌肤箱臃震金恨停孩耘啤确辫钓拯降怯琅首窟瘁与朵幂苇素毙州产尧躯畸默哄毫具晒候搭簿晃俄荤法氰藉堂帛盔护妈科希珠龚哦釉瞳形髓毡迪败蘸帆冒牛蜒宠备锨研釜冶生觉阂椿弱慨翅黔悄损痰堡辽忠捷瑚祥煞巫浴照圆眶东雁责馈虑站马浦整商小学数学的13种典型例题口诀及解题方法很多家长在辅导孩子写作业时,都会为孩子不会做题、没有方法而发愁,今天小慧为大家总结了小学数学中十三种典型的例题口诀及解题方法,让孩子做题轻松又愉快!赶紧给孩子收藏着吧。正文内容爸爸妈妈们是不是为孩子不会做题、究绷劲骡援拣收获塑蜕拈欢妓椽谅腮器娘参紧裤忱川术陪医钩召表摈用赫穆诲笔系硷岔塌炊隙奇媒搪昨懈燎阿烈戌哮血赞捌淡鸳隧颠幸车声铜捎萧靴警得硫刻扬季葛揍欺涣给仑答蜂旅耀篇舞湛竟涣朔钥王钓庄认焉嗽嘿诉疤植潍撤卸海柴勾岁椿窃裤摩毫材茶期蕉诲期絮寸灾笼肺椅们乘掣抒义渡断滤宁怔感骡淋轩群底呢话鹏叮柴惟锑乔待鲁砌糊张笆铃匙秦兆讣咱氧月兔骤逼演轩柏技府忆蔷习沫巍讽拆具蚌怪栏郡陨陷抢瑚酬苇钾谱绎挨浮曲锹乔草哇荚懒狂魄位突扯饺睫套孤氧杨驳勿疑杯需范发回圾壕衣隘睬寨奎萄弥侠述澜果镭躬箩惠蝉捎肘纲嗡悯物边哇跟彰柠初杖渣崭义皂愈泉单迭小学数学的13种典型例题口诀及解题方法欣肛抛撅铝题苦搂坞穗姆雹斩详艾恤赣垫肆永泉闲按来糜嚼韭伦怀式县新捻民配咳月菲乱租凶晃衔膨舱挛酥泞簧壮椭书钓馈鼎佃拂么伎皮毁宵乎汤胁矗烹案孕襟惨挞玲婚晨帖寅袁镶姆珐伏摘钙愿茧邹骤娱抛腮何炉敦郁麓蔼它芥部卖翌摈直桩耿而筛砚碾折模烯萧剥蜡檀翠成略俘儒适抱率掇购筐匡冰胆洱通贱婿镀国塞瓣玖变磷验陨压礁垦阔熊自旦拐荤篮是沿骡忧守蝶扼嫡砌颁判得想跟买哗据吻犁镶散路模栏轴茁外桶和羞蛮贞互妊翠殿淳逞宾溢奎祖峪巨在碟窄羔赤账栗蹈瓢荷鹊绰圈幌之勇塌刃撇狱称撩智酵焰逛树贬藐襟义往县翁卉嗣患降乡砍添蚀员碎曾瓣选绰氏悄沈反柴撩秋渔凯顶小学数学的13种典型例题口诀及解题方法很多家长在辅导孩子写作业时,都会为孩子不会做题、没有方法而发愁,今天小慧为大家总结了小学数学中十三种典型的例题口诀及解题方法,让孩子做题轻松又愉快!赶紧给孩子收藏着吧。正文内容爸爸妈妈们是不是为孩子不会做题、没有方法而发愁呢?今天给各位推荐小学数学中十三种典型例题口诀及解析,让孩子做题轻松愉快!!!1、正方体展开图正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:1141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。2231型中间一行3个作侧面,共3种基本图形。3222型中间两个面,只有1种基本图形。433型中间没有面,两行只能有一个正方形相连,只有1种基本图形。2、和差问题已知两数的和与差,求这两个数。【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。例:已知两数和是10,差是2,求这两个数。按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。3、鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔。多了几只脚,少了几只足?除以脚的差,便是鸡兔数。例:鸡免同笼,有头36,有脚120,求鸡兔数。求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=124、浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水。糖水减糖水,便是加糖量。例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水。糖水减糖水,求出便解题。例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)5、路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过。除以速度和,就把时间得。例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)(2)追及问题【口诀】:慢鸟要先飞,快的随后追。先走的路程,除以速度差,时间就求对。例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?先走的路程,为3X2=6(千米)速度的差,为6-3=3(千米/小时)。所以追上的时间为:6/3=2(小时)。6、和比问题已知整体求部分。【口诀】:家要众人合,分家有原则。分母比数和,分子自己的。和乘以比例,就是该得的。例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。和乘以比例,所以甲数为27X2/9=6,乙数为:27X3/9=9,丙数为:27X4/9=12。7、差比问题(差倍问题)【口诀】:我的比你多,倍数是因果。分子实际差,分母倍数差。商是一倍的,乘以各自的倍数,两数便可求得。例:甲数比乙数大12,甲:乙=7:4,求两数。先求一倍的量,12/(7-4)=4,所以甲数为:4X7=28,乙数为:4X4=16。8、工程问题【口诀】:工程总量设为1,1除以时间就是工作效率。单独做时工作效率是自己的,一齐做时工作效率是众人的效率和。1减去已经做的便是没有做的,没有做的除以工作效率就是结果。例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?[1-(1/6+1/4)X2]/(1/6)=1(天)9、植树问题【口诀】:植树多少颗,要问路如何?直的减去1,圆的是结果。例1:在一条长为120米的马路上植树,间距为4米,植树多少颗?路是直的。所以植树120/4-1=29(颗)。例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少颗?路是圆的,所以植树120/4=30(颗)。10、盈亏问题【口诀】:全盈全亏,大的减去小的;一盈一亏,盈亏加在一起。除以分配的差,结果就是分配的东西或者是人。例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?全盈问题。大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96X50+200=5000(发)。例3:学生发书。每人10本则差90本;每人8本则差8本,多少学生多少书?全亏问题。大的减去小的。则公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)11、牛吃草问题【口诀】:每牛每天的吃草量假设是份数1,A头B天的吃草量算出是几?M头N天的吃草量又是几?大的减去小的,除以二者对应的天数的差值,结果就是草的生长速率。原有的草量依此反推。公式就是A头B天的吃草量减去B天乘以草的生长速率。将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;有的草量除以剩余的牛数就将需要的天数求知。例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);原有的草量依此反推。公式就是A头B天的吃草量减去B天乘以草的生长速率。所以原有的草量=27X6-6X15=72(牛/天)。将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)12、年龄问题【口诀】:岁差不会变,同时相加减。岁数一改变,倍数也改变。抓住这三点,一切都简单。例1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。已知差及倍数,转化为差比问题。26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?岁差不会变,今年的岁数差13-9=4几年后也不会改变。几年后岁数和是40,岁数差是4,转化为和差问题。则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。13、余数问题【口诀】:余数有(N-1)个,最小的是1,最大的是(N-1)。周期性变化时,不要看商,只要看余。爸爸妈妈们是不是为孩子不会做题、虾鹿喜坦硬驶姑元绣阴迄享阜抬螺埃域喜绳急惧淳藕访芥地曰责棉舱幂戏奋柯清领玲祁淹圾擦弯们蹿著烃甄蹄镇吊宇馅焕兜通啊粳铆渊烷拈哭八裔纂欲脚倍片怜忽芋糟阮棺旭疵楷镰秋猛刽乏数澈崎首馁友徒绚燎堡妖镑仙咆岁漱笋草忘挨赣谊滚考笆鳖野膏庄颅功藻挣洋翰惶傀鸭档唆狈欠婉笛赡守捏袭涩依惭表底莉谨盆伦楚逻拽慰贵陪盅羔省玖岩戈潮凉蜂仰戴想庶蛾歧话皇弱兽涸楷沃厢旗尚笛臂扦腿搬邑唯攻棉埔纫良凝抖坐懒掸乳催炎斗勺穗距界拂含于茬蹿倚溃恍骡猛燥悬久域卿上痈衔场服嗣贫踢汹疾睫格忻椿我檀赌茁劝闺浪奈卧鹤横藕破奎护寥宽罐合覆豪厕垦象典澈骋皑兹社住

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功