永磁同步电机发展与控制仿真研究1永磁同步电机的研究现状与发展永磁电动机的发展同永磁材料的发展密切相关,永磁材料的磁性能和价格很大程度上决定了永磁电动机的综合性能与应用普及范围。1831年,世界上出现的第一台电机是由Barlow发明的永磁电机,但是,由于当时采用的天然磁铁磁性能太差,电机的磁能积很低,制成的电机体积庞大而容量很小,很快被电励磁电机所取代。人们对永磁材料进行深入研究的初期,相继发现了碳钢、钨钢、钴钢等多种永磁材料。20世纪30年代铝镍钴磁钢的问世,使得永磁电动机真正有了实用价值,并快速发展起来。到20世纪50年代,铁氧体永磁出现,由于价格低廉,各种微型和小型电动机纷纷使用永磁体励磁。然而,由于铝镍钴永磁和铁氧体永磁存在矫顽力偏低、剩磁密度不高等固有缺陷,在电动机的应用中受到限制。直到20世纪60~70年代,第一代和第二代稀土钐钴永磁材料SmCo5,Sm2Co17相继问世,其优异的磁性能使得永磁电机的发展呈现出新的、繁荣的生机,但是钐、钴均为稀有金属,价格昂贵,给实际应用带来了困难。1983年,日本住友特殊金属公司、美国通用汽车公司分别研制成功稀土钕铁硼永磁材料,国际上称为第三代稀土永磁材料。NdFeB磁钢磁能积高,性能优越,而且原材料丰富,价格较便宜。从1984年起,各工业发达国家竞相研制高性能永磁电机。日本住友公司和美国通用电气公司分别批量制造用于计算机外存储器的音圈电机及NdFeB永磁汽车起动电机;德国西门子公司经十多年努力,采用多种结构,研制成功用于化纤工业的高速永磁电动机和用于交流调速系统的永磁同步电动机。80年代前后,应用NdFeB材料制造高性能永磁同步电动机的研究发展很快。其中对于固定频率下永磁同步电动机的运行特性、自起动性能的研究,发表了较多的论文,但也多局限于电机稳态特性的分析,沿用的方法与传统交流电机的分析方法相近。80年代期间,国际上发表了大量永磁电机的论文,对永磁同步电动机的数学模型、稳态特性和动态特性进行研究。1986年,TomySebastian发表了永磁同步电动机(PMSM)建模的文章。1987年,TomySebastian又发表了关于永磁同步电动机调速系统的动态建模的文章,从理论上系统分析了永磁同步电动机利用PARK模型随转子一起旋转的dq0系统,但仍将d,q轴2等效绕组作为两个无耦合、参数恒定的独立部分来处理。B.Sneyers等学者最早提出了在建立PMSM数学模型时,考虑到由电机电枢电流交轴分量引起的交叉耦合问题。其中,F.Parasiliti等采用有限元法研究PMSM的模型,同时计及交叉饱和、交叉耦合的影响修正电机模型,被认为是较为有效的分析研究方法。在高性能永磁电机产品方面,国外利用稀土永磁的优异性能研制开发高性能永磁同步电动机已有20多年的历史。1978年,法国CEM公司推出ISOSYN系列0.55~18.5kW稀土钴永磁同步电动机,效率比一般异步电动机高2%~8%,功率因数提高0.05~0.15,但因当时采用钐钴永磁体成本太高,未能推广应用。我国许多高校如清华大学、西北工业大学、沈阳工业大学等和一些科研单位自1980年开始就进行高性能永磁同步电动机的研制,取得了明显的效果。先后开发了用于纺织行业中织布机、化纤机械、风机泵类的多种规格和型号的高性能钕铁硼永磁同步电动机产品,取得了良好的经济社会效益,特别是0.8kW纺织专用永磁同步电动机,效率高达91%,功率因数高于0.95,节电率高达10%以上。现代永磁电机的特点是高力能指标、大功率密度、转子奇异结构、由永磁体产生新的变量。其研究内容更广,对分析研究所采用的方法和技术(如电路、磁路、网络及场分析等)提出了更高的要求。目前国内外对永磁同步电机的研究主要有以下几个方面:(1)结构设计研究由于稀土永磁电动机具有很高的矫顽力,故充磁方向很薄的永磁体就可提供较高的气隙磁密和磁势。因此,除了传统的径向磁路结构外,当极数较多时,可采用切向磁路结构或混合式结构。目前,国内外都在研究永磁同步电动机的各种转子形状,其设计准则都是通过增加磁通、减弱电枢反应或高速运行来提高功率密度和效率。(2)优化设计在稀土永磁材料价格昂贵的情况下,应考虑如何合理地选择永磁体的工作点,使之在满足电机性能指标前提下,使所用的永磁材料最少,即电机的成本最低或体积最小。由于永磁体尺寸大小直接影响电机的各项性能指标,因而可直接选用永磁体形状作为设计变量,而将其他尺寸都用这些变量来表示。在约束条件中,电抗参数、定子齿部和轭部磁密、定子电密、起动电流以及槽满率等都应限制在一定范围内,而效率、功率因数和起动转矩等则应大于某一给定值。(3)磁场分析计算和数值方法的研究永磁电机设计中,除了电机新结构的发明创造外,最重要的发展可说是用有限元方法进行3磁场计算。为了充分发挥永磁材料的优异性能,永磁电机的结构和传统电机有很大的差别。计算永磁电机性能时,不但不能套用传统的磁路计算方法,而且和一般电机磁场分析也有很大的不同。永磁电机结构复杂,永磁材料的磁特性为各向异性等,这些都给磁场分析带来了新的课题。对于某些大容量或特殊结构的稀土永磁电机,为了提高它的设计精度,不仅要进行二维磁场分析,还需进行三维磁场分析;不但要进行静态磁场分析,还要进行瞬变磁场分析。(4)测试技术的研究由于永磁电机是永磁体励磁,磁场不能调节,而且有一些永磁电机需要充磁后再装配和检测,因此某些传统的参数和性能测试方法不能直接应用。近年来永磁电机的测试技术得到了很大的发展,例如电机稳态和暂态参数的测定、电机端部三维静磁场的测试等。对于永磁同步电动机交、直轴参数,特别是超瞬变参数物理概念的分析和测试方法是当前的重要研究课题。作为当前高性能节能电机的热点研究对象,永磁同步电动机的研究发展趋势主要有以下几个变化:第一,开发超高速电机,速度快速增大;第二,电机呈现大功率高转矩;第三,电机体积微型化;第四,智能化。随着永磁材料的不断发展,电力电子和控制技术的进步,稀土永磁电机将越来越多地替代传统电机,应用前景非常广阔。稀土永磁电机的设计和制造工艺尚需不断地进行创新,电磁结构更为复杂,计算结果更加精确,制造工艺更加先进适用,需运用多学科理论和系统工程进行优化设计,提高性价比,促进电机学科和行业进一步发展。2永磁同步电机设计中的关键技术2.1转子磁路结构设计转子磁路很大程度上决定了电动机性能,是本体设计方面的重点。磁路设计主要是对永磁体安装尺寸的设计,并结合隔磁桥、转子鼠笼槽、通风孔等结构的合理选型,旨在提高电动机的效率、功率密度和过载能力,获得良好的起动及运行性能。设计时通常要从永磁体的用量、漏磁系数、电抗/电感参数等方面综合考虑。2.1.1转子类型选择永磁电机的定子一般基本相同,但转子的结构却多种多样。按安装定、转子位置关系来分,转子结构由两大类组成,即为内、外转子结构。通常采用的是内转子结构永磁电机。4内转子结构的电机,如果按照永磁体的充磁方向来分,分别是径向式、切向式及轴向式三种;而按照永磁体在电机转子上的位置,可分为内置式、表面式和爪极式。下面对内置式转子结构做简单介绍。本文采用内置式径向式永磁电机。内置式转子结构的永磁体位于转子内部,它的永磁体表面与定子的铁心内圆之间,有铁磁材料做成的极靴,内部可放置铜条及铸铝笼,起到阻尼与启动作用,动、稳态性能好,被广泛使用在要求有自起动能力或动态性能高的永磁电机。径向式结构:该结构优点为这种结构的漏磁系数较小、在电机转轴上无需隔磁措施且极弧系数较易控制、转子上的冲片有较高的机械强度、安装永磁体材料后转子不易发生变形等。切向式结构:这种转子结构的电机漏磁系数偏大,相对于径向式制造工艺及成本会升高。但优点为在单个极距下的磁通能由相邻的两个磁极通过并联来提供,能够获得比较大每极磁通,特别是当永磁电机的极对数比较多的时候更加明显。2.1.2永磁体材料的选取永磁体的选取包括永磁体尺寸的设计和永磁体材料的选择。稀土永磁电机电磁计算一般都是先对使用永磁体尺寸进行设计。永磁体尺寸包括永磁体轴向长度、宽度及磁化方向长度。一般永磁体轴向长度取得与电机铁心的轴向长度相同或稍微小于铁心轴向长度,故实际中只需设计两个永磁体的尺寸(即磁化方向长度和永磁体宽度)。在电机设计时,还需综合考虑下列各因素:1)磁化方向长度的确定应当使电机直轴电抗选择合理,因为磁化方向长度是决定直轴电抗一个重要因素,而且直轴电抗又影响电机电磁转矩、输出功率等性能。2)磁化方向长度不能过薄。一方面,因为磁化方向长度太薄会导致生产永磁体废品率增加,使永磁体成本变大,而且永磁体不易运输及装配;另一方面,永磁体太薄将会使永磁体容易退磁,降低了电机的可靠性及稳定性。3)在设计磁化方向长度时,应使永磁体工作在于最佳工作点。因为其工作点更大程度上决定于永磁体磁化方向长度磁化方向长度,在最佳工作点工作时永磁电机的出力会稳定,且对提高电机功率密度有利。永磁体用量决定了其所能提供的磁动势大小,从而决定了一定体积下电动机的容量。理论上讲,电机外形尺寸确定后,永磁体用量越大,功率密度越高。然而,转子上放置永磁体的空间是有限的。特别的,对于内置式结构,需要考虑转子冲片各部分机械强度要求;对于转子上5安装鼠笼绕组的异步起动永磁同步电动机,还要与转子槽竞争安装空间;对于转子铁心开有通风孔或通风道的电动机,永磁体的放置无疑更加困难。与此同时,由于永磁材料价格较贵,出于经济性的考虑,永磁体的用量应在满足电动机性能要求的前提下尽可能的减少。2.1.3漏磁系数分析漏磁系数是一个很重要的参数,它的大小不仅标志着永磁材料的利用程度,而且对电动机中永磁材料抗去磁能力和电动机的性能也有较大的影响。当漏磁系数较小时,说明永磁体提供总磁通一定时,漏磁通相对较小,永磁体的利用率就高;但是,另一方面,漏磁系数太小也不利,漏磁系数小,表明对电枢反应的分流作用小,电枢反应对永磁体两端的实际作用值变大,永磁体的抗去磁能力减弱。因此,需要尽可能准确计算并在设计中选取合适的漏磁系数值。永磁同步电机转子磁路结构多种多样,漏磁路径复杂多变,用解析法计算漏磁系数的误差较大,一般只能用作粗略估算。常用有限元法或矢量磁位法来计算漏磁系数。2.1.4交直轴电抗分析电抗参数受磁路结构的影响较大,而其本身又影响电动机运行性能。传统电励磁电机利用解析法来计算交、直轴同步电抗Xq和Xd,由于采用简化的计算模型和一些必要的假定,所得结果带有一定的局限性。永磁同步电动机电枢反应电抗的计算方法和电励磁电动机不同,永磁体没有电励磁的开路和短路状态,永磁体的励磁作用是固定存在的,因而不考虑永磁体作用的计算方法显然没有实际意义。而且交、直轴磁路同时经过定、转子齿部和定子轭部闭合,因而,交、直轴磁路之间的相互影响也不容忽略。电抗参数必须根据永磁同步电机内部磁场的实际分布状态来求取,需采用场的计算方法,用电磁场有限元分析方法计算永磁同步电机的同步电抗Xd和Xq。2.2运行性能改善与优化设计技术电动机在工程应用中的运行性能包括效率、功率密度、起动能力和过载能力等,调速运行时还要求较宽的转速范围。运行性能提升可通过结构尺寸优化设计来实现,而不同性能对结构尺寸调整的要求往往存在矛盾。电机设计的优化目标可以是单一的也可以是多种组合式的,在保证各项运行性能指标的前6提下,还包含体积、重量最小或者成本最低等要求,由于永磁材料的用量往往是决定电动机造价的主要因素,也常常把永磁体体积作为优化目标。选取不同的目标函数,得到的优化结果可能存在较大的差异,特别是选取多目标函数的优化时,电机尺寸的微小变化可能对电机性能参数带来较大的影响。因此,需合理选择优化目标。2.3电机系统匹配合理性设计在大多数传统驱动场合,电动机工作在某一特定运行状态下,针对该工况来设计额定工作点,可获得额定最佳性能。随着节能工程的大力推进和控制技术的快速发展,越来越多的驱动场合开始采用变频调速来提高系统整体效率,电动机的运行不再局限于某一特定工作点,而是处于变化的转速和变化的负载状态下。相应地,对永磁同步电动机的设计也不再仅仅着眼于额定工作点,而要根据使用对象和应用场合,