人教版七下数学第六章实数复习课件ppt

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

本章知识结构图乘方开方开平方开立方平方根立方根有理数无理数实数互为逆运算算术平方根负的平方根平方根、立方根概念及性质1.算术平方根的定义:一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作“根号a”,a叫做被开方数。x2特殊:0的算术平方根是0。00记作:一般地,如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根).这就是说,如果x2=a,那么x就叫做a的平方根.a的平方根记为±a2.平方根的定义:3.平方根的性质:正数有2个平方根,它们互为相反数;0的平方根是0;负数没有平方根。平方根、立方根概念及性质4.立方根的定义:一般地,如果一个数的立方等于a,那么这个数就叫做a的立方根,也叫做a的三次方根.记作.3a其中a是被开方数,3是根指数,符号“”读做“三次根号”.35.立方根的性质:一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。平方根、立方根概念及性质你知道算术平方根、平方根、立方根联系和区别吗?算术平方根平方根立方根表示方法a的取值性质a3aa≥0a是任何数开方a≥0a正数0负数正数(一个)0没有互为相反数(两个)0没有正数(一个)0负数(一个)求一个数的平方根的运算叫开平方求一个数的立方根的运算叫开立方≠是本身0,100,1,-12a2a33a33a=a0a00aa)0(aaaaa33aa0a为任何数a为任何数a为任何数a1.求下列各数的算术平方根:(1)0.04;(2)1;(3)56;(4)(-3)2;(5)49643.求下列各数的立方根:(1)121;(2)16;(3)0;(4)(-3)2;(5)942.求下列各数的平方根:(1)-0.008;(2)43;(3)-64;(4)(-3)3;(5)2784.求下列各式的值:16.0)1(31(4)169)2(925)3(327125)5(求根也好,求值也好,关键要弄清它是什么意思,然后可以选择定义和性质来求.不要搞错了是8的平方根的平方根是64的值是64的平方根是9的立方根是6464±883-4的所有整数为小于大于1117______.-4,-3,-2,-1,0,1,2,3一、平方根和立方根1.16的平方根是_____,符号表示为_____;16的算术平方根是____,符号表示为_____.2.27的立方根是____,符号表示为_____.3.下列数中的无理数是______________-1,,0.3,,0,0.1010010001…(相邻两个1之间0的个数逐次加1).4163164327311349,8,311,0.1010010001…2ππ2___222___22____222333(3)3222()=2332()=2利用定义无理数也有乘除运算,在后面的章节里将会学习,也满足先定符号,再计算.三、实数的运算不要遗漏哦!解下列方程:4)3(92y323312yy或当方程中出现平方时,若有解,一般都有两个解0835273)(x1x当方程中出现立方时,一般都有一个解1.解:94)3(2y2.解:8)35(273x278)35(3x327835x3235x943y323y掌握规律的平方根是那么已知0017201.0,147.4201.17,311.17201.104147.0是则若已知xx,4858.0,858.46.23,536.136.2236.0的值是则已知3335250,744.35.52,738.125.538.17注意平方根和立方根的移位法则1、无限不循环的小数叫做无理数.有理数和无理数统称实数.4、在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样6、在进行实数的运算时,有理数的运算法则及运算性质同样适用。实数的有关概念和性质2、实数与数轴上的点是一一对应的.3、同样的,平面直角坐标系中的点与有序实数对是一一对应的.5、实数的大小比较方法有:利用数轴比较、利用绝对值比较、求平方比较、求差比较、求商比较和计算近似值比较等方法。实数有理数无理数分数整数正整数0负整数正分数负分数自然数正无理数负无理数无限不循环小数有限小数及无限循环小数一般有三种情况、)1(开不尽的数”“”“23,、00010100100010.0)3(类似于、课堂检测1、判断下列说法是否正确:1.实数不是有理数就是无理数。()2.无限小数都是无理数。()3.无理数都是无限小数。()4.带根号的数都是无理数。()5.两个无理数之积一定是无理数。()6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。()有理数集合:{};1、把下列各数填在相应的大括号内:,1,75,,14.3,0,333.3,3,643.1010010001.2整数集合:{……};奇数集合:{……};无理数集合:{}。-1,0,364-1-1,,3.14,0,3.3·3·,,75364π,2.1010010001…,412、把下列各数分别填入相应的集合内:,23,7,,25,23,5,83,94,03737737773.0有理数集合无理数集合,83,41,25,94,0,23,7,,2,3,53737737773.0322314.3是负数等于它的相反数14.314.3是正数等于它本身23是负数2332)(原式232314.3232314.3223314.314.3里面的数的符号化简绝对值要看它等于它的相反数要学会计算哟!1·计算:(1)343、()(2)3(132)、22233(3)(3)(2)42、(-2)2、(结果保留3个有效数字)(1)、5(2)22)2、(3(3)29252、注意:计算过程中要多保留一位!01-1√2如图是两个边长1的正方形拼成的长方形,其面积是2.现剪下两个角重新拼成一个正方形,新正方形的边长是_____√2√22√2下图数轴中,正方形的对角线长为____,以原点为圆心,对角线长为√2半径画弧截得一点,该点与原点的距离是____,√2该点表示的数是____.√2实数与数轴上的点是一一对应关系.√2-0132-1-2问题:边长为1的正方形,对角线长为多少?22平面直角坐标系中的点与有序实数对是一一对应的.-3123-1-222xy)2,2(ABCD)2,2()2,2()2,2(√2在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。(1)a是一个实数,它的相反数为,绝对值为;(2)如果a0,那么它的倒数为.aaa1实数的大小比较方法多种,要具体观察实数的特点,灵活选择最好的比较方法比较大小的方法适用范围主要的依据举例利用数轴比较所有实数实数与数轴上的点是一一对应关系,有大小顺序排列。(略)利用绝对值比较负实数两负实数比较,绝对值大的反而小,绝对值小的反而大。-√5、-3求平方比较正实数两正数比较,平方值大的数大,平方值小的数小。课本求差比较同号实数对于同号实数a、b,若a-b≧0,则a≧b(略)求商比较同号正实数对于同号正实数a、b,若a∕b≧1,则a≧b(略)计算近似值比较含无理数的实数牢牢记住的近似值,直接计算比较课本。。。、、、532通过这节课的学习,你有何收获?我们大家来总结!

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功