1().2OPOAOB课本基础知识的延伸:•线段中点的向量表达式:若P为线段AB的中点,则(1).OPOAOB其中2.若点P,A,B共线,则12,ee11220ee120.4.若不共线,,则0.GAGBGC3.若G为△ABC的重心,则反之亦然.O222222OABCOBCAOCABO1.1在同一平面上,有△ABC及一点满足关系式,则A.内心B.垂心C.外心D.重心是△ABC的()OCAB2222OABCOBCA解:由2222OAOCOBOBOAOC即:()0OCOBOAOCAB化简有:,OABCOBAC同理有:OABC为的垂心.ABC)(OCOBOAmOHm的外接圆的圆心为O,两条边上的高的交点为H,,则实数.OCOBOAOH解法一:特例法.ABC为一个直角三角形,则O点斜边的中点,设顶点,这时有H点为直角,1.m高考真题再现,,DAABCHABAHDCOHOAAHOAOBOC解法二:连BO延长交⊙O于D,连AD、CD.CH∥DA同理,AH∥DC,DCDOOCOBOC又OHABDC∴四边形AHCD为平行四边形.CAHBOABCOGH三角形的欧拉线:外心O、重心G、垂心H三点共线且OG=GH123()3OGOHmOAOBOCmOG1,3PACABCSS512PBCABCPACPABABCSSSSSACBDPENM解法一:利用平面向量基本定理ACABAP4131ABCPBCSS例2.设P为△ABC内一点,且满足,则.14PABABCSS典型例题ACABAP41311113()3434APABACABAC11313344PABABDABCABCSSSS44141313333343PACPADABDABCABCSSSSS512PBCABCPACPABABCSSSSS法二:构造三角形的重心.34ADAC取点D使得则点P为△ABD的重心,连接BD,·P·DABCACABAP4131ABCPBCSS例2.设P为△ABC内一点,且满足,则.032PCPBPAACPBCPABP,,2.1已知P为△ABC内一点,且满足,则面积之比为.ABCABOABCCAOABCBCOSSSSSS,,OCOBOA2.2设O为△ABC内一点,记,则.变式训练:032PCPBPAACPBCPABP,,2.1已知P为△ABC内一点,且满足,则面积之比为.解法一:利用平面向量基本定理1132APABAC得032PCPBPA由EPFDCAB1,3PACABCSS12PABABCSS111(1)326PBCABCABCSSS111::::3:1:2263ABPPBCACPSSS230PAPBPCACPBCPABP,,2.1已知P为△ABC内一点,且满足,则面积之比为.法二:构造三角形及重心.PABCC'B'PABC'2PBPB'3PCPB0PAPBPC则P为的重心.ABC1,2PABPABSS16PBCPBCSS13PACPACSS令111::::3:1:2263ABPPBCACPSSS13103OAOBOCOAOBOC解法一:特例法.取O为△ABC的重心,则ABCABOABCCAOABCBCOSSSSSS,,OCOBOA2.2设O为△ABC内一点,记,则.变式训练:ADAEAOADAEABACABAC0OAOBOCCBAODEABCABOABCCAOABCBCOSSSSSS,,OCOBOA2.2设O为△ABC内一点,记,则.()ABACOBOCOA1r由题知,,CAOABOABCABCSSADAESABSAC法二:过O分别作AC、AB的平行线OD、OE,交AB于D,交AC于E,则00.OAOBOC,,,,ABCSBCOCAOABOSSS,,引申:设O为△ABC内一点,记=m,则分别为.2、已知A、B、C是平面上不共线的三点,O为平面ABC内1[(1)(1)(12)],()3OPOAOBOCRA.内心B.垂心C.外心D.重心任一点,动点P满足等式则动点P的轨迹一定通过△ABC的()bACaAB,bnAQamAP,nm113、已知G为△ABC的重心,令点G分别交AB,AC于P,Q两点,且,则,若PQ过.0543OCOBOAC4、△ABC外接圆的圆心为O,且,则角.,,,abc0aOAbOBcOC1、△ABC中三边长分别为O为△ABC所在平面内一点,若A.外心B.内心C.重心D.垂心,则O为△ABC的()课后作业