红外光谱仪的发展

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

最佳答案在过去的50多年里,近红外光谱仪经历了如下几个发展阶段:★第一台近红外光谱仪的分光系统(50年代后期)是滤光片分光系统,测量样品必须预先干燥,使其水分含量小于15%,然后样品经磨碎,使其粒径小于1毫米,并装样品池。此类仪器只能在单一或少数几个波长下测定(非连续波长),灵活性差,而且波长稳定性、重现性差,如样品的基体发生变化,往往会引起较大的测量误差!“滤光片”被称为第一代分光技术。★70年代中期至80年代,光栅扫描分光系统开始应用,但存在以下不足:扫描速度慢、波长重现性差,内部移动部件多。此类仪器最大的弱点是光栅或反光镜的机械轴长时间连续使用容易磨损,影响波长的精度和重现性,不适合作为过程分析仪器使用。“光栅”被称为第二代分光技术。★80年代中后期至90年代中前期,应用“傅立叶变换”分光系统,但是由于干涉计中动镜的存在,仪器的在线可靠性受到限制,特别是对仪器的使用和放置环境有严格要求,比如室温、湿度、杂散光、震动等。“傅立叶变换”被称为第三代分光技术。★90年代中期,开始有了应用二极管阵列技术的近红外光谱仪,这种近红外光谱仪采用固定光栅扫描方式,仪器的波长范围和分辨率有限,波长通常不超过1750nm。由于该波段检测到的主要是样品的三级和四级倍频,样品的摩尔吸收系数较低,因而需要的光程往往较长。“二极管阵列”被称为第四代分光技术。★90年代末,来自航天技术的“声光可调滤光器”(缩写为AOTF)技术的问世,被认为是“90年代近红外光谱仪最突出的进展”,AOTF是利用超声波与特定的晶体作用而产生分光的光电器件,与通常的单色器相比,采用声光调制即通过超声射频的变化实现光谱扫描,光学系统无移动性部件,波长切换快、重现性好,程序化的波长控制使得这种仪器的应用具有更大的灵活性,尤其是外部防尘和内置的温、湿度集成控制装置,大大提高了仪器的环境适应性,加之全固态集成设计产生优异的避震性能,使其近年来在工业在线和现场(室外)分析中得到越来越广泛的应用。非制冷红外技术发展现状(上)尤海平(2005.11.17)在夜视领域,红外探测器是热成像系统的核心,主要分为两类:制冷型(基于光子探测)和非制冷型(基于热探测)。尽管前者(或者为光电探测器,或者为光伏器件)被认为是实际应用中最佳的红外热探测技术,但它们的制造和使用成本较高。不过,近年来非制冷红外探测器获得了长足发展。与制冷红外探测器相比,非制冷红外探测器不需要在系统中安装制冷装置,因此尺寸较小、重量较轻且功耗较低。此外,它们与制冷型光子探测器相比可提供更宽的频谱响应和更长的工作时间。因此,非制冷技术能为军事用户提供成本更低、可靠性更高的高灵敏传感器。换句话说,它们能更廉价地进行采购和使用,这是其吸引人的地方。不幸的是,非制冷红外探测器在灵敏度方面至今无法满足所有军事应用的要求,因此其应用仍然存在一定限制。不过,随着更多的投资涌向该技术领域,这种情况无疑会发生改变。在不以远距离应用为主的场合,非制冷红外技术的应用正日趋广泛。这方面的最好例子是许多国家准备发展的综合未来士兵系统,夜视能力是其基本要求,此时成本、重量和功耗显得格外重要。工作原理红外探测器产生的输出信号依赖于进入其作用区域的辐射总量。热(非制冷红外)探测器将入射辐射转换为热,而这将导致探测器元件温度升高。温度的变化随后将转换为可被放大和显示的电信号。热探测器能响应较宽范围的波长,而且不同波长的响应能力没有明显差异,同时在室温下具有足够高的灵敏度,可以满足成像要求。红外频谱覆盖0.7~14m,并被分为短波红外(也称为近红外,覆盖0.7~3m波段)、中波红外(覆盖3~5m)和长波红外(也称远红外,覆盖5~14m),不过大多数长波红外探测器覆盖8~12m。非制冷红外探测器有三种类型:测辐射热计,它测量电阻随温度的变化;热电(或铁电)探测器,测量自发电子偏振随温度的变化;热电堆,测量电动势随温度的变化(这就是众所周知的塞贝克效应或热电效应)。在这三种探测器中,测辐射热计探测器由于与CMOS(互补型金属氧化物半导体)技术兼容而成为应用最广泛的非制冷红外探测器。这种探测器可以单片方式与标准CMOS电路集成,因此生产成本较低。它还允许使用超大规模集成技术实现有源像素结构,这种结构可以在一块芯片上集成摄像机的所有功能。为了成为热成像摄像机的一部分,单独的红外探测器(包括制冷型或非制冷型)通常以集群成所谓的焦平面阵列(FPA),不过在特定的应用中也可以制成线阵。每个探测器提供一个探测像素,组成阵列的像素越多,所形成的图像越清晰(且越精确)。除了红外探测器或焦平面阵列外,热成像摄像机还需要电源、信号处理器、各种光学子部件以及视频监视器系统。现有的热成像摄像机的用途多种多样,例如机载应用中的前视红外系统(或者装在吊舱中,或者成为传感器转塔有效负载的一部分)、装甲战车和海军导弹系统用的火控系统、单兵或班组武器的瞄准镜以及导弹寻的器等。非制冷红外探测器目前的应用范围主要有监视、轻型头盔瞄准具、灵巧弹药、武器瞄准具、无人值守地面传感器和导弹/灵巧炸弹寻的器等。对非制冷技术的进一步发展要求可以概括为更高的灵敏度、更小的像素尺寸和更大阵列(目标是640×480元或更大)。此外,这类热像仪还需要提高温度稳定性、降低光学系统成本和减小功耗。这些需求的不同组合将导致更轻、更紧凑且生产成本更低的设计。在美国,陆军通信-电子司令部夜视与电子传感器局和国防高级研究计划局(DARPA)合作研究非制冷技术。主要有三家公司--BAE系统公司北美分公司、DRS技术公司和雷西昂公司从事军用非制冷微测辐射热计研究工作,其中DRS公司曾兼并了得克萨斯仪器公司、休斯公司和波音公司的红外业务。红外焦平面阵列技术的发展现状与趋势2未来的发展趋势上面已叙述了进入二十一世纪以来红外焦平面技术的发展现状与趋势,2010年时的红外焦平面阵列技术发展将是人们十分关注的课题,那么2010年时红外焦平面阵列技术的发展将是什么结果呢?目前先进的红外焦平面阵列技术正处在从第二代向第三代更为先进的阵列技术发展的转变时期。各有关公司厂家着眼于2010年市场需求,正在加紧确定第三代红外焦平面阵列技术的概念,目前各有关公司和厂家机构的注意力已转向第三代红外焦平面阵列传感器的发展。第三代红外焦平面阵列技术要满足以下几种要求:·焦平面上探测器像元集成度为≥106元,阵列格式≥1K×1K,至少双色工作,·高的工作温度,以便实现低功耗和小型轻量化的系统应用,·非致冷工作红外焦平面阵列传感器的性能达到或接近目前第二代致冷工作红外焦平面阵列传感器的水平,·必须是极低成本的微型传感器,甚至是一次性应用的传感器。第三代红外焦平面阵列传感器有下列三种:即:(1)大型多色高温工作的红外焦平面阵列,探测器像元集成度≥106元,阵列格式1000×1000,1000×2000,和4096×4096元,像元尺寸18×18μm2,目前芯片尺寸22×22mm2,未来的芯片应更大,高的量子效率,能存储和利用探测器转换所有的光电子,自适应帧速(480Hz),双色或多色工作,使用斯特林或热电温差电致冷器,工作在120~180K,光响应不均匀≤0.05%,NETD≤50mk(f/1.8),结构上单片或混合集成,可以是三维的。(2)非致冷红外焦平面阵列,无须温度稳定或致冷,用于分布孔径设计,重量仅1盎司,30mW功率,焦平面探测器元集成度≥106元,阵列格式1000×1000元,像元尺寸为25μm×25μm,NETD<10mK(f/1),或60mK(f/2.5),低成本、低功耗、中等性能,用于分布孔径设计中获取实用信息。(3)非致冷工作的微型传感器,焦平面探测器像元集成度仅160×120元~320×240元,像元尺寸50μm×50μm~25μm×25μm,NETD<50mK(f/1.8),输入功率10mW以下,重量1盎司,尺寸<2立方英寸,低成本。最终的第三代红外焦平面阵列将是极低成本的微型传感器,将占领整个红外市场,其未来的应用将是无人操作的一次性应用传感器,如微型无人驾驶航空飞行器,头盔安装式红外摄像机和微型机器人等。表1列出了第三代红外焦平面阵列传感器的特点。高性能多色致冷传感器高性能非致冷传感器非致冷微型传感器焦平面阵列格式1000×10001000×20002000×20004096×40961000×1000160×120320×240像元尺寸18μm×18μm1密尔×1密尔2密尔×2密尔工作波段双色或多色8×12μm封装真空高真空中等真空中等真空制冷器机械或热电温差制冷器非致冷非致冷工作温度120K~180K室温,无需温度稳定室温,无需温度稳定目标最大作用距离最大杂波抑制低成本,低功耗,中等性能一次性使用,10mW功率3结论进入二十一世纪,红外焦平面阵列技术发展已取得了举世瞩目的成就,已从第一代线阵列发展到了今天的二维TDI和大型凝视焦平面阵列,目前正在向焦平面探测器元高集成度(≥106元)的高密度、小像元(25μm×25μm~18μm×18μm)、高性能、多色和低成本的方向发展;最佳答案研究红外辐射的产生、传播、转化、测量及其应用的技术科学。任何物体的红外辐射包括介于可见光与微波之间的电磁波段。通常人们又把红外辐射称为红外光、红外线。实际上其波段是指其波长约在0.75微米到1000微米的电磁波。通常人们将其划分为近、中、远红外三部分。近红外指波长为0.75~3.0微米;中红外指波长为3.0~20微米;远红外则指波长为20~1000微米。在光谱学中,波段的划分方法尚不统一,也有人将0.75~3.0微米、3.0~40微米和40~1000微米作为近红外、中红外和远红外波段。另外,由于大气对红外辐射的吸收,只留下三个重要的窗口区,即1~3微米、3~5微米和8~13微米可让红外辐射通过,因而在军事应用上,又分别将这三个波段称为近红外、中红外和远红外。8~13微米还称为热波段。红外技术的内容包含四个主要部分:1.红外辐射的性质,其中有受热物体所发射的辐射在光谱、强度和方向的分布;辐射在媒质中的传播特性--反射、折射、衍射和散射;热电效应和光电效应等。2.红外元件、部件的研制,包括辐射源、微型制冷器、红外窗口材料和滤光电等。3.把各种红外元、部件构成系统的光学、电子学和精密机械。4.红外技术在军事上和国民经济中的应用。由此可见,红外技术的研究涉及的范围相当广泛,既有目标的红外辐射特性,背景特性,又有红外元、部件及系统;既有材料问题,又有应用问题。[相关技术]探测技术;精确制导技术;光电子技术;先进材料技术[技术难点]红外技术的发展关键在于红外材料的研制、红外设备的制冷、红外设备向更长波段发展、红外焦平面阵列器件的研制和红外设备与数据处理设备的结合等。[国外概况]自从1800年英国天文学家F?W?赫歇尔发现红外辐射至今,红外技术的发展经历了将近两个世纪。从那时开始,红外辐射和红外元件、部件的科学研究逐步发展,但发展比较缓慢,直到1940年前后才真正出现现代的红外技术。当时,德国研制成硫化铅和几种红外透射材料,利用这些元、部件制成一些军用红外系统,如高射炮用导向仪、海岸用船舶侦察仪、船舶探测和跟踪系统,机载轰炸机探测仪和火控系统等等。其中有些达到实验室试验阶段,有些已小批量生产,但都未来得及实际使用。此后,美国、英国、前苏联等国竞相发展。特别是美国,大力研究红外技术在军事方面的应用。目前,美国将红外技术应用于单兵装备、装甲车辆、航空和航天的侦察监视、预警、跟踪以及武器制导等各个领域。红外技术发展的先导是红外探测器的发展。1800年,F?W?赫歇尔发现红外辐射时使用的是水银温度计,这是最原始的热敏型红外探测器。1830年以后,相继研制出温差电偶的热敏探测器、测辐射热计等。在1940年以前,研制成的红外探测器主要是热敏型探测器。19世纪,科学家们使用热敏型红外探测器,认识了红外辐射的特性及其规律,证明了红外线与可见光具有相同的物理性质,遵守相同的规律。它们都是电磁波之一,具有波动性,其传播速度都是光速、波长是它们的特征参数并可以测量。20世纪初开始,

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功