牛吃草问题讲义--一

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1牛吃草问题“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间。难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定。“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变;②每头牛每天的食草量不变;③草的总量草场原有的草量新生的草量,其中草场原有的草量是一个固定值④新生的草量每天生长量天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;(引申重点!为什么设一头牛一天吃草为一个单位,有学生问为什么不设为两个单位,三个单位……该怎么回答?设几个单位都无所谓,就算设一亿个单位都没事,因为最后都要被消去的。例如:牧场上有一片青草,牛每天吃草,草每天以均匀的速度增长,这片青草可以让十头牛吃20天,15头牛吃10天,那么可以让25头牛吃多少天?解:根据题目描述得:设一头牛一天吃1单位的草,原来的草量为y,草长出的速度为x,时间为N:(1):10头牛20天吃的草量=原来的草量+20天长出的草量即:(a):200头牛1天吃的草量=原来的草量+20天长出的草量也可以用字母来表示:200=y+20x(2):15头牛10天吃的草量=原来的草量+10天长出的草量即:(b):150头牛1天吃的草量=原来的草量+10天长出的草量也可以用字母来表示:150=y+10x,(a)-(b)得:50头牛1天吃的草量=10天长出的草量所以:1天长出的草量=5头牛1天吃的草量(倍数关系)带入(a)得:原来的草量=100头牛1天吃的草量即:x=5,y=100那么根据问题描述可列出式子:25头牛N天吃的草量=原来的草量+N天长出的草量即:25N头牛1天吃的草量=100头牛1天吃的草量+5N头牛1天吃的草量,用字母表示为:25N=100+5N,N=5所以N=5。即:可以让25头牛吃5天。我的解法都没设一头牛一天吃草为一个单位,是因为我用了大量的文字描述,如果你要用方程之类的,也可以设一头牛一天吃草为(m、p、q、1、2、3。。。),随便都可以,反正到最后都要被消去的。)⑵草的生长速度(对应牛的头数较多天数对应牛的头数较少天数)(较多天数较少天数);2⑶原来的草量对应牛的头数吃的天数草的生长速度吃的天数;⑷吃的天数原来的草量(牛的头数草的生长速度);⑸牛的头数原来的草量吃的天数草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.题型1、一块地的“牛吃草问题”1、牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【解析】设1头牛1天的吃草量为“1”,10头牛吃20天共吃了1020200份;15头牛吃10天共吃了1510150份.第一种吃法比第二种吃法多吃了20015050份草,这50份草是牧场的草201010天生长出来的,所以每天生长的草量为50105,那么原有草量为:200520100.供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要100205(天)可将原有牧草吃完,即它可供25头牛吃5天.2、由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?【解析】设1头牛1天的吃草量为“1”,651天自然减少的草量为2051664,原有草量为:2045120。若有11头牛来吃草,每天草减少11415;所以可供11头牛吃120158(天).题型2、牛羊一起吃草的“牛吃草问题”1、一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?【解析】设1头牛1天的吃草量为“1”,由于一头牛一天吃草量等于5只羊一天的吃草量,所以100只羊吃12天相当于20头牛吃12天.那么每天生长的草量为16202012201210,原有草量为:161020120.10头牛和75只羊1天一起吃的草量,相当于25头牛一天吃的草量;25头牛中,若有10头牛去吃每天生长的草,那么剩下的15头牛需要120158天可以把原有草量吃完,即这块草地可供10头牛和75只羊一起吃8天.2、一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?【解析】设1匹马1天吃草量为“1”,根据题意,有:15天马和牛吃草量原有草量15天新生长草量……⑴20天马和羊吃草量原有草量20天新生长草量……⑵30天牛和羊(等于马)吃草量原有草量30天新生长草量……⑶由(1)2(3)可得:30天牛吃草量原有草量,所以:牛每天吃草量原有草量30;由⑶可知,30天羊吃草量30天新生长草量,所以:羊每天吃草量每天新生长草量;设马每天吃的草为3份3将上述结果带入⑵得:原有草量60,所以牛每天吃草量2.这样如果同时放牧牛、羊、马,可以让羊去吃新生长的草,牛和马吃原有的草,可以吃:602312(天).题型3、“牛”吃草问题的变例1、早晨6点,某火车进口处已有945名旅客等候检票进站,此时,每分钟还有若干人前来进口处准备进站.这样,如果设立4个检票口,15分钟可以放完旅客,如果设立8个检票口,7分钟可以放完旅客.现要求5分钟放完,需设立几个检票口?【解析】设1个检票口1分钟放进1个单位的旅客.①1分钟新来多少个单位的旅客:1(41587)(157)2②检票口开放时已有多少个单位的旅客在等候:4×15-12×15=5212③5分时间内检票口共需放进多少个单位的旅客:5212+12×5=55④设立几个检票口:55511(个)2、一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管。开始进水管以均匀的速度不停地向这个蓄水池蓄水。池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光。如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时。问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?【解析】设1根排水管1小时排水为“1”,进水速度为(31883)(183)2,原有水量为(82)318,如果想要在8小时内将池中的水全部排光,最少要打开18824.25根出水管,每根出水管1小时排水1份,又出水管的根数是整数,故最少要打开5根出水管。3、两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级梯级,女孩每秒可走2级梯级,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒。问:该扶梯共有多少级梯级?【解析】本题与牛吃草问题类似,其中扶梯的梯级总数相当于原有草量;而自动扶梯运行的速度则相当于草的增长速度。并且上楼的速度要分成两部分︰一部分是孩子自己的速度,另一部分是自动扶梯的速度。自动扶梯的速度(女孩每秒走的梯级×女孩走的时间-男孩每秒走的梯级×男孩走的时间)÷(女孩走的时间-男孩走的时间(23003100)(300100)1.5,自动扶梯的梯级总数=女孩每秒走的梯级×女孩走的时间-自动扶梯的速度×女孩走的时间23001.5300600450150(级)所以自动扶梯共有150级的梯级。4、小明从甲地步行去乙地,出发一段时间后,小亮有事去追赶他,若骑自行车,每小时行15千米,3小时可以追上;若骑摩托车,每小时行35千米,1小时可以追上;若开汽车,每小时行45千米,分钟能追上。4【解析】本题是“牛吃草”和行程问题中的追及问题的结合.小明在312小时内走了15335110千米,那么小明的速度为1025(千米/时),追及距离为155330(千米).汽车去追的话需要:3304554(小时)45(分钟).题型4、“牛”的数量发生变化1、一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?【解析】设1头牛1天的吃草量为“1”,那么每天生长的草量为44053040301,原有草量为:5130120.如果4头牛吃30天,那么将会吃去30天的新生长草量以及90原有草量,此时原有草量还剩1209030,而牛的头数变为6,现在就相当于:“原有草量30,每天生长草量1,那么6头牛吃几天可将它吃完?”易得答案为:30616(天).2、某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派250个工人砌砖墙,6天可以把砖用完,如果派160个工人,10天可以把砖用完,现在派120名工人砌了10天后,又增加5名工人一起砌,还需要再砌几天可以把砖用完?【解析】开工前运进的砖相当于“原有草量”,开工后每天运进相同的砖相当于“新生长的草”,工人砌砖相当于“牛在吃草”.所以设1名工人1天砌砖数量为“1”,那么每天运来的砖为16010250610625,原有砖的数量为:2502561350.如果120名工人砌10天,将会砌掉10天新运来的砖以及950原有的砖,还剩1350950400的原有的砖未用,变成1205125人来砌砖,还需要:400125254(天).题型5、多块地的“牛吃草问题”1、东升牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在东升牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?【解析】设1头牛1天的吃草量为“1”,那么2000平方米的牧场上1688天生长的草量为181627872,即每天生长的草量为7289.那么2000平方米的牧场上原有草量为:18916144.则6000平方米的牧场每天生长的草量为96000200027;原有草量为:14460002000432.6天里,该牧场共提供牧草432276594,可以让594699(头)牛吃6天.

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功