新人教A版(选修1-2)1.1《回归分析的基本思想及其初步应用》ppt课件2

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.1回归分析的基本思想及其初步应用温故知新两个变量的关系不相关相关关系函数关系线性相关非线性相关函数关系中的两个变量间是一种确定性关系。相关关系是一种非确定性关系。例1、某大学中随机选取8名女大学生,其身高和体重数据如下表所示.编号12345678身高/cm165165157170175165155170体重/kg4857505464614359(1)画出散点图(2)根据女大学生的身高预报体重的回归方程,(3)预报一名身高为172cm的女大学生的体重.解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。根据最小二乘法估计和就是未知参数a和b的最好估计,ab于是有所以回归方程是0.84985.712yx所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为0.84917285.71260.316()ykg(x,y)称为样本点的中心身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?样本点呈条状分布,身高和体重有较好的线性相关关系,因此可以用回归方程来近似的刻画它们之间的关系.nniiiii=1i=1nn222iii=1i=1(x-x)(y-y)xy-nxyb===0.849,(x-x)x-nxa=y-bx=-85.712解:散点图:3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a简单描述它们关系。我们可以用下面的线性回归模型来表示:y=bx+a+e,其中a和b为模型的未知参数,e称为随机误差。思考P3产生随机误差项e的原因是什么?思考:产生随机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、其它因素的影响:影响体重y的因素不只是身高x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、身高x的观测误差。线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。在统计中,我们也把自变量x称为解析变量,因变量y为预报变量。残差数据点和它在回归直线上相应位置的差异称为相应于点(xi,yi)的残差。iiieyy=例:编号为6的女大学生,计算随机误差的效应(残差)61(0.84916585.712)6.627残差平方和把每一个残差所得的值平方后加起来,用数学符号表示为:21()niiiyy称为残差平方和在例1中,残差平方和约为128.361。表1-4列出了女大学生身高和体重的原始数据以及相应的残差数据。残差分析与残差图的定义:我们可以通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析。12,,,neee编号12345678身高165165157170175165155170体重/kg4857505464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。残差图的制作及作用。•坐标纵轴为残差变量,横轴可以有不同的选择;•若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;•对于远离横轴的点,要特别注意。身高与体重残差图异常点•错误数据•模型问题几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。我们可以用相关指数R2来刻画回归的效果,其计算公式是n2ii2i=1n2ii=1(y-y)R=1-(y-y)显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析变量和预报变量的线性相关性越强)。如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。总的来说:相关指数R2是度量模型拟合效果的一种指标。在线性模型中,它代表自变量刻画预报变量的能力。用身高预报体重时,需要注意下列问题:1、回归方程只适用于我们所研究的样本的总体;2、我们所建立的回归方程一般都有时间性;3、样本采集的范围会影响回归方程的适用范围;4、不能期望回归方程得到的预报值就是预报变量的精确值。事实上,它是预报变量的可能取值的平均值。练习1在一段时间内,某中商品的价格x元和需求量Y件之间的一组数据为:求出Y对的回归直线方程,并说明拟合效果的好坏。价格x1416182022需求量Y1210753解:18,7.4,xy555221111660,327,620,iiiiiiixyxyˆ7.41.151828.1.aˆ1.1528.1.yx回归直线方程为:5152215ˆ5iiiiixyxybxx26205187.41.15.1660518练习1在一段时间内,某中商品的价格x元和需求量Y件之间的一组数据为:求出Y对的回归直线方程,并说明拟合效果的好坏。价格x1416182022需求量Y1210753列出残差表为521ˆ()iiiyy0.3,521()iiyy53.2,5221521ˆ()1()iiiiiyyRyy0.994因而,拟合效果较好。ˆiiyyiyy00.3-0.4-0.10.24.62.6-0.4-2.4-4.4练习2关于x与y有如下数据:有如下的两个线性模型:(1);(2)试比较哪一个拟合效果更好。x24568y3040605070ˆ6.517.5yxˆ717.yx案例2一只红铃虫的产卵数y和温度x有关。现收集了7组观测数据列于表中:(1)试建立产卵数y与温度x之间的回归方程;并预测温度为28oC时产卵数目。(2)你所建立的模型中温度在多大程度上解释了产卵数的变化?温度xoC21232527293235产卵数y/个711212466115325非线性回归问题假设线性回归方程为:ŷ=bx+a选模型由计算器得:线性回归方程为y=19.87x-463.73相关指数R2=r2≈0.8642=0.7464估计参数解:选取气温为解释变量x,产卵数为预报变量y。选变量所以,二次函数模型中温度解释了74.64%的产卵数变化。探索新知画散点图050100150200250300350036912151821242730333639方案1分析和预测当x=28时,y=19.87×28-463.73≈93一元线性模型y=bx2+a变换y=bt+a非线性关系线性关系方案2选用y=bx2+a,还是y=bx2+cx+a?-200-1000100200300400-40-30-20-10010203040产卵数气温如何求a、b?t=x2二次函数模型方案2解答平方变换:令t=x2,产卵数y和温度x之间二次函数模型y=bx2+a就转化为产卵数y和温度的平方t之间线性回归模型y=bt+a温度21232527293235温度的平方t44152962572984110241225产卵数y/个711212466115325作散点图,并由计算器得:y和t之间的线性回归方程为y=0.367t-202.543,相关指数R2=0.802将t=x2代入线性回归方程得:y=0.367x2-202.543当x=28时,y=0.367×282-202.54≈85,且R2=0.802,所以,二次函数模型中温度解释了80.2%的产卵数变化。产卵数y/个0501001502002503003500150300450600750900105012001350t变换y=bx+a非线性关系线性关系21cxyce-50050100150200250300350400450-10-50510152025303540产卵数气温指数函数模型方案3方案3解答温度xoC21232527293235z=lny1.9462.3983.0453.1784.1904.7455.784产卵数y/个71121246611532500.40.81.21.622.42.8036912151821242730333639xz当x=28oC时,y≈44,指数回归模型中温度解释了98.5%的产卵数的变化由计算器得:z关于x的线性回归方程为0.272x-3.849ˆ.ye22111221lnln()lnlnlnlnlncxcxycececcxecxc对数变换:在中两边取常用对数得21cxyce令,则就转换为z=bx+a.12ln,ln,zyacbc21cxyceˆz=0.272x-3.849,相关指数R2=0.98最好的模型是哪个?-200-1000100200300400-40-30-20-10010203040产卵数气温-50050100150200250300350400450-10-50510152025303540产卵数气温-10001002003004000510152025303540产卵数线性模型二次函数模型指数函数模型比一比函数模型相关指数R2线性回归模型0.7464二次函数模型0.80指数函数模型0.98最好的模型是哪个?作业:在7块并排的、形状大小相同的实验田上进行施肥量对水稻产量影响的试验,得到如下一组表所示的数据(单位:kg)施化肥量x15202530354045水稻产量y330345365405445450455(1)以x为解释变量,y为预报变量,作出散点图(2)求y与x之间的回归方程,并求施肥量为28kg时的水稻产量的预报值(3)计算各组残差,并计算残差平方和(4)求R2,并说明残差变量对产量影响有多大?练习3假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料。使用年限x23456维修费用y2.23.85.56.57.0若由资料知,y对x呈线性相关关系。试求:(1)线性回归方程的回归系数;(2)求残差平方和;(3)求相关系数;(4)估计使用年限为10年时,维修费用是多少?ˆˆˆybxaˆˆab、2R一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)。(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功