-1-高一数学数列求和练习(一)班级姓名1.等差数列na中,若14739aaa,36727aaa,则前9项的和9S等于().A.66B.99C.144D.2972.设231()2222()nfnnN,则()fn等于()A.21nB.22nC.122nD.222n3.满足*12121,loglog1()nnaaanN,它的前n项和为nS,则满足1025nS的最小n值是()A.9B.10C.11D.124.数列na中,已知112nnaa*()nN且53a,则前n项和为nS,则10S的值为________.5.求和2345672223242526272.6.定义在R上的函数)(xf满足2)21()21(xfxf,则)83()82()81(fff67()()_______88ff7.求nnnS212252321328.求数列{23nn}的前n项和nT.-2-9.已知数列}{na是等差数列,18,652aa,{}nb是等比数列,12()3nnb.(1)求na的通项公式;(2)记nnnbac,求}{nc的前n项和nS.10.已知等差数列{na}的前n项和为nS,且nS22nn(*nN),数列{nb}满足24log3nnab,(*nN).(1)求与nb的通项公式;(2)求数列{nanb}的前n项和nT.-3-高一数学数列求和练习(一)班级姓名.1.等差数列na中,若14739aaa,36727aaa,则前9项的和9S等于(B).A.66B.99C.144D.2972.设231()2222()nfnnN,则()fn等于(D)A.21nB.22nC.122nD.222n3.满足*12121,loglog1()nnaaanN,它的前n项和为nS,则满足1025nS的最小n值是(C)A.9B.10C.11D.12【解析】数列na2log是以0为首项,公差为1的等差数列,1110log2nnan,12nna,20482,10242,10262,1025122121222211110132nnnnnS,所以,最小n值是11.选C4.数列na中,已知112nnaa*()nN且53a,则前n项和为nS,则10S的值为_____552___.5.求和23456722232425262721538.6.定义在R上的函数)(xf满足2)21()21(xfxf,则)83()82()81(fff67()()_______88ff【答案】77.求和:nnnS212252321328.数列{2n·3n}的前n项和Tn.解析:Tn=2·31+4·32+6·33+…+2n·3n,①3Tn=2·32+4·33+6·34+…+2n·3n+1,②①-②得-2Tn=2·31+2·32+2·33+…+2·3n-2n·3n+1,则Tn=12n·3n+1+3210.已知数列}{na是等差数列,18,652aa,{}nb是等比数列,12()3nnb.-4-(1)求数列}{na的通项公式;(2)记nnnbac,求}{nc的前n项和nS.答案:解:(Ⅰ)设na的公差为d,则:21aad,514aad,∵26a,518a,∴116418adad,∴12,4ad.[来源:]∴24(1)42nann.(2)∴11(42)2()(84)()33nnnnncabnn.∴2112111114()12()(812)()(84)()3333nnnnnSccccnn.∴231111114()12()(812)()(84)()33333nnnSnn.∴231121111148()8()8()(84)()3333333nnnnnSSSn21111()[1()]41338(84)()13313nnn118114()(84)()333nnn.∴144(1)()3nnSn.11.已知等差数列{na}的前n项和为nS,且nS22nn(*nN),数列{nb}满足24log3nnab,(*nN).(1)求na,nb;(2)求数列{na·nb}的前n项和nT.【答案】(1)an=4log2bn+3,21nbn(2)(45)25nnTn【解析】试题分析:解,(1)由Sn=22nn,得当n=1时,113aS;当n2时,1nnnaSS2222(1)(1)41nnnnn,n∈N﹡.由an=4log2bn+3,得12nnb,n∈N﹡.(2)由(1)知1(41)2nnnabn,n∈N﹡所以21372112...412nnTn,-5-2323272112...412nnTn,212412[34(22...2)]nnnnTTn(45)25nn(45)25nnTn,n∈N﹡.