热塑性变形的概念实际热加工温度远高于再结晶温度在热塑性变形过程中,回复、再结晶与加工硬化同时发生,加工硬化不断被回复或再结晶所抵消,而使金属处于高塑性、低变形抗力的软化状态。热塑性变形1.热塑性变形时软化过程(1)动态回复动态回复是在热变形过程中发生的回复,金属即使在远高于静态再结晶温度下塑性变形时一般也只发生动态回复。(2)动态再结晶动态再结晶是在热变形过程中发生的再结晶,与静态再结晶一样,也是通过形核和生长来完成的。它容易发生在层错能较低且有较大热变形程度的金属上。1.热塑性变形时软化过程(3)静态回复在较低的温度下、或在较早阶段发生转变的过程称为静态回复。它是变形后的金属自发地向自由能降低的方向转变的过程。(4)静态再结晶在再结晶温度以上,金属原子有更大的活动能力,会在原变形金属中重新形成新的无畸变等轴晶,并最终取代冷变形组织,此过程称为金属的静态再结晶。1.热塑性变形时软化过程(5)亚动态再结晶热变形中已经形成但未长大的再结晶晶核以及长大途中遗留下的再结晶晶粒,在变形停止后温度足够高时,会继续长大,此过程称为亚动态再结晶。它不需形核,所以进行得很快。4.2.2热塑性变形机理2.热塑性变形的机理变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变。一般来说,晶内滑移是最主要且最常见的(1)晶内滑移热变形的主要机理是晶内滑移。高温时原子间距加大,热振动和扩散速度增加,位错滑移、攀移、交滑移及节点脱锚比低温容易;滑移系增多,滑移灵便性提高,各晶粒之间变形更加协调;晶界对位错运动阻碍作用减弱。2.热塑性变形的机理(2)晶界滑移热塑性变形时,由于晶界强度降低,使得晶界滑动易于进行;又由于扩散作用的增强,消除了晶界滑动引起的破坏。因此,与冷变形相比晶界滑动的变形量要大的多。此外,降低应变速率和减小晶粒尺寸,有利于增大晶界滑动量。三向应力的作用也利于“塑性焊合”,修复晶界滑动引起的裂缝。在常规的热塑性变形中,其占的比例很小。扩散蠕变示意a)空位和原子的移动方向b)晶内扩散c)晶界扩散2.热塑性变形的机理(3)扩散性蠕变扩散性蠕变是在应力场作用下,由空位的定向移动所引起的。受拉应力的晶界的空位浓度高于其他部位的晶界,引起空位的定向移动,即空位从垂直于拉应力的晶界放出,而被平行于拉应力的晶界所吸收。a图中虚箭头方向表示空位移动的方向,实箭头方向表示原子的移动方向,形状改变。按扩散途径的不同,可分为晶内扩散和晶界扩散。晶内扩散引起晶粒在拉应力方向上的伸长变形(见图b),或在受压方向上的缩短变形;而晶界扩散引起晶粒的“转动”,如图c所示。扩散性蠕变既直接为塑性变形作贡献,也对晶界滑移起调节作用。3.热塑性变形对金属组织和性能的影响1)对组织的影响(1)改善晶粒组织,细化晶粒对于铸态金属,粗大的树枝状晶经塑性变形及再结晶而变成等轴(细)晶粒组织;对于经轧制、锻造或挤压的钢坯或型材,在以后的热加工中通过塑性变形与再结晶,其晶粒组织一般也可得到改善。晶粒越细小均匀,金属的强度和塑、韧性指标均越高。尽管晶粒度还可以通过锻后的热处理来改善,但如果锻件的晶粒过于粗大,则这种改善也不可能很彻底。至于那些无固态相变、不能通过热处理来改善其晶粒度的金属(如奥氏体不锈钢、铁索体不锈钢和一些耐热合金等),控制其塑性变形再结晶晶粒度就更具有十分重要的意义。1)对组织的影响(2)锻合内部缺陷铸态金属中疏松、空隙和微裂纹等缺陷被压实,提高金属致密度。锻合经历两个阶段:缺陷区发生塑性变形,使空隙两壁闭合;在压应力作用下,加上高温,使金属焊合成一体。没有足够大的变形,不能实现空隙闭合,很难达到宏观缺陷焊合。足够大三向压应力,能实现微观缺陷锻合。3.热塑性变形对金属组织和性能的影响1)对组织的影响(3)形成纤维组织在热变形过程中,随变形程度增加,钢锭内粗大树枝晶沿主变形方向伸长,与此同时,晶间富集的杂质和非金属夹杂物的走向也逐渐与主变形方向一致,形成流线。由于再结晶的结果,被拉长的晶粒变成细小的等轴晶,而流线却很稳定地保留下来。3.热塑性变形对金属组织和性能的影响1)对组织的影响(4)破碎改善碳化物和非金属夹杂在钢中分布高速钢、高铬钢、高碳工具钢等,其内部含有大量的碳化物。通过锻造或轧制,可使这些碳化物被打碎、并均匀分布,从而改善了它们对金属基体的削弱作用。(5)在一定程度上改善铸造组织的偏析是由于热变形破碎枝晶和加速扩散所致。其小枝晶偏析(或显微偏析)改善较大,区域性偏析改善不明显。3.热塑性变形对金属组织和性能的影响3.热塑性变形对金属组织和性能的影响2)对性能的影响细化晶粒、锻合内部缺陷、破碎并改善碳化物和非金属夹杂在钢中分布可提高材料的强度、硬度、塑性和韧性。纤维组织形成,使金属力学性能呈各向异性,沿流线方向比垂直流线方向具有较高的力学性能,其中尤以塑性、韧性指标最为显著。谢谢!