2020高考数学冲刺训练学生特训1第4讲导数的热点问题(大题)热点一导数的简单应用利用导数研究函数的单调性是导数应用的基础,只有研究了函数的单调性,才能研究其函数图象的变化规律,进而确定其极值、最值和函数的零点等.注意:若可导函数f(x)在区间D上单调递增,则有f′(x)≥0在区间D上恒成立,但反过来不一定成立.例1(2019·武邑调研)已知函数f(x)=lnx+ax2+bx(其中a,b为常数且a≠0)在x=1处取得极值.(1)当a=1时,求f(x)的单调区间;(2)若f(x)在(0,e]上的最大值为1,求a的值.跟踪演练1(2019·延庆模拟)已知函数f(x)=ln(x+a)在点(1,f(1))处的切线与直线x-2y=0平行.(1)求a的值;(2)令g(x)=fxx,求函数g(x)的单调区间.2020高考数学冲刺训练学生特训2热点二导数与函数零点或方程根的问题已知函数零点x0∈(a,b),求参数范围的一般步骤:(1)对函数求导;(2)分析函数在区间(a,b)上的单调情况;(3)数形结合分析极值点;(4)依据零点的个数确定极值的取值范围,从而得到参数的范围.例2(2019·石家庄质检)已知函数f(x)=ex-x-a(a∈R).(1)当a=0时,求证:f(x)x;跟踪演练2(2019·怀化模拟)设函数f(x)=lnx-12ax2-bx.(1)若x=1是f(x)的极大值点,求a的取值范围;(2)当a=0,b=-1时,方程x2=2mf(x)(其中m0)有唯一实数解,求m的值.2020高考数学冲刺训练学生特训3热点三导数与不等式恒成立、存在性问题1.由不等式恒成立求参数的取值范围问题的策略:(1)求最值法,将恒成立问题转化为利用导数求函数的最值问题;(2)分离参数法,将参数分离出来,进而转化为af(x)max或af(x)min的形式,通过导数的应用求出f(x)的最值,即得参数的范围.2.利用导数处理不等式在区间D上有解或恒成立的常用结论:不等式af(x)在区间D上有解⇔af(x)max;不等式a≤f(x)在区间D上有解⇔a≤f(x)max;不等式af(x)在区间D上有解⇔af(x)min;不等式a≥f(x)在区间D上有解⇔a≥f(x)min;不等式af(x)在区间D上恒成立⇔af(x)min;不等式a≤f(x)在区间D上恒成立⇔a≤f(x)min;不等式af(x)在区间D上恒成立⇔af(x)max;不等式a≥f(x)在区间D上恒成立⇔a≥f(x)max.例3(2019·郴州质检)设函数f(x)=2x-2-alnx,a∈R.(1)讨论函数f(x)的单调性;(2)设a0,若存在正实数m,使得对任意x∈(1,m)都有|f(x)|2lnx恒成立,求实数a的取值范围.跟踪演练3(2019·南充调研)已知f(x)=ax-ln(-x),x∈[-e,0),其中e是自然对数的底数,a∈R.(1)当a=-1时,证明:f(x)+ln-xx12;2020高考数学冲刺训练学生特训4(2)是否存在实数a,使f(x)的最小值为3,如果存在,求出a的值;如果不存在,请说明理由.热点四导数与不等式的证明问题利用导数证明不等式的解题策略:一般先将待证不等式如f(x)≥g(x)的形式转化为f(x)-g(x)≥0的形式,再设h(x)=f(x)-g(x),进而转化为研究函数h(x)在指定区间上的最小值问题.不过由于不等式呈现的形式多样化,具体求解时还得灵活多变.例4(2019·济南模拟)已知函数f(x)=xlnx-a2x2+(a-1)x,其导函数f′(x)的最大值为0.(1)求实数a的值;(2)若f(x1)+f(x2)=-1(x1≠x2),证明:x1+x22.跟踪演练4(2019·湖南长沙雅礼中学、河南省实验中学联考)已知函数f(x)=ae2x-aex-xex(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立.(1)求实数a的值;2020高考数学冲刺训练学生特训5(2)证明:f(x)存在唯一极大值点x0,且ln22e+14e2≤f(x0)14.真题体验(2018·全国Ⅰ,理,21)已知函数f(x)=1x-x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,押题预测已知函数f(x)=lnx-ax+1x.(1)若1是函数f(x)的一个极值点,求实数a的值;(2)讨论函数f(x)的单调性;2020高考数学冲刺训练学生特训6(3)在(1)的条件下证明:f(x)≤xex-x+1x-1.A组专题通关1.(2019·郴州质检)已知函数f(x)=ex(ax2+x+a).(1)讨论函数f(x)的单调性;(2)若函数f(x)≤ex(ax2+2x)+1恒成立,求实数a的取值范围.2.(2019·全国Ⅲ)已知函数f(x)=2x3-ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.2020高考数学冲刺训练学生特训73.(2019·聊城模拟)已知函数f(x)=alnx+x2+(a+2)x.(1)讨论函数f(x)的单调性;(2)设a0,若不相等的两个正数x1,x2满足f(x1)=f(x2),证明:f′x1+x220.B组能力提高4.已知函数f(x)=lnx-2x-11+x,g(x)=ex-12x-3.(1)求函数f(x)在[1,+∞)的最小值;(2)设ba0,证明:b-alnb-lnaa+b2;(3)若存在实数m,使方程g(x)=m有两个实根x1,x2,且x2x132,证明:x1+x25.2020高考数学冲刺训练学生特训85.(2019·衡阳质检)已知函数f(x)=ex-11+lnx.(1)求函数f(x)的单调区间;(2)解关于x的不等式f(x)12x+1x.数学核心素养练习一、数学抽象、直观想象素养1数学抽象通过由具体的实例概括一般性结论,看我们能否在综合的情境中学会抽象出数学问题,并在得到数学结论的基础上形成新的命题,以此考查数学抽象素养.例1(2019·全国Ⅱ)设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x-1).若对任意x∈(-∞,m],都有f(x)≥-89,则m的取值范围是()A.-∞,94B.-∞,73C.-∞,52D.-∞,832020高考数学冲刺训练学生特训91.如图表示的是一位骑自行车和一位骑摩托车的旅行者在相距80km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3h,晚到1h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5h后追上了骑自行车者;④骑摩托车者在出发1.5h后与骑自行车者速度一样.其中,正确信息的序号是________.素养2直观想象通过空间图形与平面图形的观察以及图形与数量关系的分析,通过想象对复杂的数学问题进行直观表达,看我们能否运用图形和空间想象思考问题,感悟事物的本质,形成解决问题的思路,以此考查直观想象素养.例2(2019·全国Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线2020高考数学冲刺训练学生特训102.(2018·北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4二、逻辑推理、数学运算素养3逻辑推理通过提出问题和论证命题的过程,看我们能否选择合适的论证方法和途径予以证明,并能用准确、严谨的数学语言表述论证过程,以此考查逻辑推理素养.例3(2019·全国Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙3.(2018·全国Ⅰ)已知双曲线C:x23-y2=1,O为坐标原点,F为C的右焦点,过F的直线与2020高考数学冲刺训练学生特训11C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|等于()A.32B.3C.23D.4素养4数学运算通过各类数学问题特别是综合性问题的处理,看我们能否做到明确运算对象,分析运算条件,选择运算法则,把握运算方向,设计运算程序,获取运算结果,以此考查数学运算素养.例4(2019·全国Ⅰ)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为()A.π6B.π3C.2π3D.5π64.(2018·全国Ⅲ)设a=log0.20.3,b=log20.3,则()A.a+bab0B.aba+b0C.a+b0abD.ab0a+b三、数学建模、数据分析素养5数学建模通过实际应用问题的处理,看我们是否能够运用数学语言清晰、准确地表达数学建模的过程和结果,以此考查数学建模素养.例5(2019·全国Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-125-12≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()2020高考数学冲刺训练学生特训12A.165cmB.175cmC.185cmD.190cm5.(2019·北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元,每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.素养6数据分析通过对概率与统计问题中大量数据的分析和加工,看我们能否获得数据提供的信息及其所呈现的规律,进而分析随机现象的本质特征,发现随机现象的统计规律,以此考查数据分析素养.例6(2019·全国Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:2020高考数学冲刺训练学生特训13记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).6.某市一水电站的年发电量y(单位:亿千瓦时)与该市的年降雨量x(单位:毫米)有如下统计数据:2013年2014年2015年2016年2017年降雨量x(毫米)15001400190016002100发电量y(亿千瓦时)7.47.09.27.910.0(1)若从统计的5年中任取2年,求这2年的发电量都高于7.5亿千瓦时的概率;(2)由表中数据求得线性回归方程为y^=0.004x+a^,该水电站计划2019年的发电量不低于8.6亿千瓦时,现由气象部门获悉2019年的降雨量约为1800毫米,请你预测2019年能否完成发电