《数形结合法在函数零点问题中的应用》教学设计李志刚山东省安丘市第一中学【教学目标】函数的零点一直是近年来全国各地高考卷上的热点,因其综合性强,让很多同学感到困难.本文通过对高考试卷中有关零点问题的研究,来说明如何将数形结合思想运用于函数零点的问题中,使零点问题变得直观形象,从而有效地将问题解决.【教学思想、方法】数形结合分类讨论转化与化归函数与方程【教学过程】函数的零点是新课标中增加的内容,一直是近年来全国各地高考考查的热点.含有零点问题的试题常在函数、方程、图象等方面进行知识交汇,可以很好地考查高中的四大数学思想.所以零点问题常常以选择题、填空题、解答题等形式出现,是同学们最常见的失分点之一,这让很多同学感到学习上有障碍.另一方面,数形结合主要是指数与形建立的一一对应关系,将抽象的数学语言与直观的图形结合起来,通过对图形的处理,化难为易,化抽象为直观.由于零点问题蕴含着丰富的数形结合思想,所以在高考试卷中一直备受青睐.通过对高考试卷上有关函数零点问题的研究,总结出如何将数形结合思想在零点问题中进行恰当地应用.题目中常有已知函数的零点个数,求参数的范围问题.零点的个数可以转化为方程的根的个数,再利用数形结合思想转化为两个函数图象的交点个数,这种方法可以使问题直观地得以解决.多媒体展示:1.针对题型:(1)确定零点的大致范围,多出现在选择题中;(2)确定零点的个数问题,多出现在选择题中;(3)利用已知零点的个数求参数的范围,多出现在选择题、填空题、解答题中均有可能出现。2.解决方案:(1)直接画出函数图像,观察图像得出结论。(2)不能直接画出函数图像的,可以等价地转化为两个函数图像的交点,通过判断交点的个数得出函数零点的个数或要求的参数范围。例题讲解:已知函数2,0()ln,0kxxfxkRxx,若函数y=|f(x)|+k有三个零点,则实数k的取值范围是().2.10.21.2AkBkCkDk[解析]:对于零点问题,先让函数等于零。然后移向构造两个函数,在同一坐标系中作出函数y=|f(x)|的图像和y=-k的图像,问题转化为两个函数图像有三个不同的交点.解:令|f(x)|+k=0,则|f(x)|=-k,在同一坐标系中作出函数y=|f(x)|的图像和y=-k的图像,问题转化为两个函数图像有三个不同的交点.由于|f(x)|≥0,故必须-k≥0,即k≤0.显然,k=0时两个函数图像只有一个公共点,所以k0,此时两个函数图像有三个公共点,如图所示,只要-k≥2,即k≤-2.【注】结合FLASH课件展示动态图像,体现数形结合的重要性。归纳小结:1.解决此类问题的关键是数形结合;2.还应把握两类知识:(1)灵活构造函数;(2)图像的各类变换:平移、伸缩、对称、周期性变换等。【教学反思】在某个区间内若存在零点,可以考虑零点定理.但作为压轴题的最后一问,直接运用零点定理肯定会有难度,通过观察,发现出题者给出的第一问对第二问有提示作用,这样就可以创造条件来运用零点定理.这种现象在高考试卷最后的一两道解答题中经常会出现,另外,函数问题通常都要使用数形结合的思想,这样才可以使很多问题迎刃而解,且解法简捷.以高考题为例,对利用数形结合思想在函数零点问题中的应用做了初步研究.数形结合思想是高中数学四大常用思想方法之一,可以使某些抽象的数学问题直观化、形象化,变抽象思维为形象思维,有利于把握数学问题的本质.零点问题是高中数学的热点、难点,运用数形结合的思想,可以使零点问题不再让学生感到困难.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难人微;数形结合百般好,隔离分家万事休”,可见数和形是数学中两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.作为中学数学教师,在函数零点问题教学时渗透数形结合的思想,并在平时的训练中不断领悟和总结,可以促使学生在解决零点问题的能力上得到改善和提高!