OnAutomatiSeletionofTemporalSalesinTime-CausalSale-Spae?TonyLindebergComputationalVisionandAtivePereptionLaboratory(CVAP)DepartmentofNumerialAnalysisandComputingSieneKTH,S-10044Stokholm,SwedenAbstrat.Thispaperoutlinesageneralframeworkforautomatise-letionintemporalsale-spaerepresentations,andshowshowthesug-gestedtheoryappliestomotiondetetionandmotionestimation.1IntrodutionAfundamentalonstraintonthedesignofavisionsystemoriginatesfromthefatthatimagestruturesarepereivedasmeaningfulentitiesonlyoverertainrangesofsale.Ingeneralsituations,itishardlyeverpossibletoknowinadvaneatwhatsalesinterestingstruturesanbeexpetedtoappear.Forthisreason,animagerepresentationthatexpliitlyinorporatesthenotionofsaleisaruiallyimportanttoolwhendealingwithsensorydata,suhasimages.Amulti-salerepresentationbyitself,however,ontainsnoexpliitinfor-mationaboutwhatimagestruturesshouldberegardedassigni antorwhatsalesareappropriatefortreatingthose.Earlyworkaddressingtheseproblemsforblob-likeimagestrutureswaspresentedin(Lindeberg1993a),leadingtothenotionofasale-spaeprimalsketh.Then,in(Lindeberg1993b,1996b)anextensiontootheraspetsofimagestrutureswaspresentedbyseletingsalesfordi erentialfeaturedetetors(suhasblobs,orners,edgesandridges)frommaximaoversalesofnormalizeddi erentialentities.Thesubjetofthisartileistoaddresstheproblemofsaleseletioninthetemporaldomain,inordertodealwithimagedataovertime.Whereas,itisnowrathergenerallyaeptedthatsomekindof\smoothingovertimeisneessarywhenproessingtime-varyingimages,mosturrentworkonmotionanalysisisstillarriedoutatasingletemporalsale(see,e.g.,(Barronetal.1994;BeauheminandBarron1995)).Amainargumentwhihwillbeadvoatedinthisartile,isthatinanalogytoearlieradvanesonspatialdomains,theperformaneandrobustnessofalgo-rithmsoperatingovertimeanbeimprovedsubstantially,ifthespatio-temporalimagedataareonsideredatseveraltemporalsalessimultaneously,andifweinorporateexpliitmehanismsforautomatiseletionoftemporalsales.?TehnialreportISRNKTHNA/P{97/09{SE.DepartmentofNumerialAnalysisandComputingSiene,RoyalInstituteofTehnology,S-10044Stokholm,Sweden,Sep1997.AlsopresentedinPro.AFPAC’97:AlgebraiFramesforthePereption-AtionCyle(G.SommerandJ.J.Koenderink,eds.),vol.1315ofLetureNotesinComputerSiene,(Kiel,Germany),pp.94{113,SpringerVerlag,Berlin,Sept.1997.Toformthebasisofatheoryfortemporalsaleseletion,wewillstartbyshowinghowtime-ausalnormalizedsale-spaederivativesanbede nedfordi erenttypesoftime-ausalsale-spaeonepts.Then,anadaptationofapre-viouslyproposedheuristipriniplewillpresented,statingthatintheabseneoffurtherinformation,importantluesforspatio-temporalsaleseletionanbeobtainedfromthesalesatwhih(possiblynon-linear)ombinationsofnormal-izedspatio-temporalderivativesassumemaximaoversales.Spei ally,itwillbeshownhowthisapproahappliestomotiondetetionandveloityestimation.2Spatialandtemporalsale-spae:OverviewTraditionally,mostworkonsale-spaerepresentationhasbeenonernedwiththespatialdomain,inwhihthevaluesoftheinputsignalareavailableinalloordinatediretions.GivenanyD-dimensionalsignalf:IRD!IR,its(spatial)sale-spaerepresentationL:IRD IR+!IRisde nedbyonvolutionL( ;s)=g( ;s) f(1)withthe(rotationallysymmetri)Gaussiankernelg(x;s)=1(2 s)N=2e xTx=2s(2)andsale-spaederivativesarede nedfromthisrepresentationbyLx ( ;s)=x L( ;s)wheres2IR+isthesaleparameterand =( 1;:::; D)representstheorderofdi erentiation.Ashasbeenshownbyseveralauthors(Witkin1983;Koenderink1984;YuilleandPoggio1986;KoenderinkandvanDoorn1992;Florak1993;Lindeberg1994;Pauwelsetal.1995),thehoieoftheGaussiankernelanditsderivativesisbasiallyauniquehoie,givennaturalassumptionsonavisualfront-end(sale-spaeaxioms).Thissale-spaeonept,however,annotbediretlyappliedtotemporaldata,sineinareal-timesituationitisessentialthatimageoperatorsdonotextendintothefuture.Onesuggestionforhowtodealwiththisproblemwasgivenby(Koenderink1988),whoproposedtotransformthetimeaxissoastomapthepresentmomenttotheunreahablein nity.Inthetransformeddomain,hethenappliedthetraditionalsale-spaeoneptgivenby(1)and(2).Basedonalassi ationofsale-spaekernelsintheontinuousanddisretedomains,whihguaranteenon-reationofloalextremaandrespetthetimediretionasausal(Lindeberg1990;LindebergandFagerstr om1996;Lindeberg1997),threeothertypesoftemporalsale-spaeapproahesanbedistinguished:Continuoustimeanddisretesaleparameter:Forontinuoustime,itturnsoutthatalltime-ausalsale-spaekernelsanbedeomposedintoonvolutionwithprimitivetrunatedexponentialkernelshprim(t; )=1 e t= (t 0)(3)having(possiblydi erent)timeonstants .Foreahsuhprimitive lter,themeanis andthevariane 2.Hene,ifweoupleksuh ltersinasade,theequivalentonvolutionkernelwillhaveaLaplaetransformoftheformHomposed(s; )=Z1t= 1 ki=1hprim(t; i) e stdt=kYi=111+ is;(4)withmean(timedelay)Pki=1 iandvariane(e etiveintegrationtime)Pki=1 2i.Disretetimewithdisretesaleparameter.Thedisreteorrespondenetothetrunatedexponential ltersare rst-ordergeometrimovingaverage ltersor-respondingtothereurrenerelationfout(t) fout(t 1)=11+ (fin(t) fout(t 1)):(5)Suhaprimitive lterhasmean andvariane 2+ .Couplingksuh ltersinasade,givesa lterwithgener