1直线与圆的位置关系题型培优题型1(泉州)已知直线y=kx(k≠0)经过点(3,-4),(1)求k的值;(2)将该直线向上平移m(m>0)个单位,若平移后得到直线与半径为6的⊙O相离(点O为坐标原点),试求m的取值范围【变式题组】1.(辽宁)如图,直线y=33x+3与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),⊙P与y轴相切于点O,若将⊙P沿x轴向左移动,当⊙P与该直线相交时,横坐标为整数的点P有个2.(永州)如图,在平面直角坐标系内,O为原点,A点的坐标为(-3,0),经过A、O两点作半径为52的⊙O,交y轴的负半轴于点B(1)求B点的坐标;(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式题型2(襄樊)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于C,若∠A=25°,∠D等于()A.40°B.50°C.60°D.70°【变式题组】3.(徐州、南京)如图,两个同心圆的半径分别为3cm和5cm,弦AB与小圆相切于点C,则AB的长为()A.4cmB.5cmC.6cmD.8cm4.(南充)如图,从⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A,B,若PA=8cm,C是AB上的一个动点(点C与A、B两点不重合),过点C作⊙O的切线,分别交PA、PB于点D、E,则△PED的周长是.5.(徐州)如图,AB是⊙O的直径,C在AB的延长线上,CD与⊙O相切于D,若∠C=18°,则∠CDA=.6.(荆门)如图,Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆半径r=.2题型3(日照)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E(1)求∠AEC的度数;(2)求证:四边形OBEC是菱形【变式题组】7.(宁波)已知:如图,⊙O的直径AB与弦CD相交于E,⌒BC=⌒BD,⊙O的切线BF与弦AD的延长线交于点F,(1)求证:CD∥BF(2)连结BC,若⊙O的半径为4,cos∠BCD=34,求线段AD、CD的长题型4(安顺)如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,(1)求证:DE是⊙O的切线;(2)作DG⊥AB交⊙O于G,垂足为F,若∠A=30°,AB=8,求弦DG的长【变式题组】8.(十堰)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连结DB,且AD=DB(1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长9.(大连)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.(1)判断直线CD是否是⊙O的切线,并说明理由;(2)若CD=33,求BC的长.3题型5(本溪)如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB,(1)判断直线BD和⊙O的位置关系,并给出证明;(2)当AB=10,BC=8时,求BD的长【变式题组】10.(仙桃)如图,AB为⊙O的直径,D是⊙O上的一点,过O点作AB的垂线交AD于点E,交BD的延长线于点C,F为CE上一点,且FD=FE(1)请探究FD与⊙O的位置关系,并说明理由(2)若⊙O的半径为2,BD=3,求BC的长.11.(德化)如图,已知矩形ABCD中,点O在对角线AC上,以OA长为半径的圆O与AD、AC交于点E、F∠ACB=∠DCE(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=22,BC=2,求⊙O的半径.三、演练巩固反馈提高1.(佳木斯)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连结AD,则下列结论:①AD⊥BC②∠EAD=∠B③OA=12AC④DE是⊙O的切线。正确的个数是()A.1个B.2个C.3个D.4个2.(衡阳)如图,直线AB切⊙O于点C,D是⊙O上一点,∠EDC=30°,弦EF∥AB,连结OC交EF于点H,连结CF,且CF=2,则HE的长为3.(门头沟)如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是()A.-1≤x≤1B.-2≤x≤2C.0≤x≤2D.x>244.(武汉)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连结DE,(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于点F,若OF=CF,求tan∠ACO的值.5.(北京)已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径(1)求证:AE与⊙O相切;(2)当BC=4,cosC=13时,求⊙O的半径.6.(无锡)如图,已知点(63,0),(0,6)AB,经过A、B的直线l以每秒1个单位的速度向下作匀速平移运动,同时,点P从点B出发,在直线l上以每秒1个单位的速度沿直线l向右下方向作匀速运动.设它们运动的时间为t秒.(1)用含t的代数式表示点P的坐标;(2)过O作OC⊥AB于C,过C作CD⊥x轴于D,问:t为何值时,以P为圆心、1为半径的圆与直线OC相切?并说明此时⊙P与直线CD的位置关系.7.(陕西)如图,⊙O是△ABC的外接圆,AB=AC,过点A作AP∥BC,交BO的延长线于点P(1)求证:AP是⊙O的切线;(2)若⊙O的半径R=5,BC=8,求线段AP的长.8.(贺州)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连结DE、OE.(1)求证:DE是⊙O的切线(2)如果⊙O的半径是32cm,ED=2cm,求AB的长BAOPDClxy5四、培优升级1.(义乌)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC,弦DF⊥AB于点(1)求证:点E是⌒BD的中点;(2)求证:CD是⊙O的切线;(3)若sin∠BAD=45,⊙O的半径为5,求DF的长.2.(衡阳)如图,AB是⊙O的直径,弦BC=2㎝,∠ABC=60°,(1)求⊙O的直径;(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连接EF,当t为何值时,△BEF为直角三角形.3.(深圳)如图,在平面直角坐标系,直线l:y=-2x-8分别与x轴、y轴相交于A、B两点,点P(O,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?