第1页(共7页)一元二次方程实际应用专题1、(2018重庆)在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.(1)按计划,2018年前5个月至少要修建多少个沼气池?(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a%,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a%,5a%,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a%,8a%,求a的值.解:(1)设2018年前5个月要修建x个沼气池,则2018年前5个月要修建(50﹣x)个垃圾集中处理点,根据题意得:x≥4(50﹣x),解得:x≥40.答:按计划,2018年前5个月至少要修建40个沼气池.(2)修建每个沼气池的平均费用为78÷[40+(50﹣40)×2]=1.3(万元),修建每个垃圾处理点的平均费用为1.3×2=2.6(万元).根据题意得:1.3×(1+a%)×40×(1+5a%)+2.6×(1+5a%)×10×(1+8a%)=78×(1+10a%),设y=a%,整理得:50y2﹣5y=0,解得:y1=0(不合题意,舍去),y2=0.1,∴a的值为10.2、(2018•宜昌)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;第2页(共7页)(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.解:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:m1=,m2=﹣(舍去),∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),(3)设第一年用乙方案治理降低了100n=100×0.3=30,则(30﹣a)+2a=39.5,解得:a=9.5,则Q=20.5.设第一年用甲方案整理降低的Q值为x,第二年Q值因乙方案治理降低了100n=100×0.3=30,解得:3、(2018•安顺)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=1280+1600,解得:x1=0.5=50%,x2=﹣2.5(舍去).答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.(2)设2017年该地有a户享受到优先搬迁租房奖励,根据题意得:8×1000×400+5×400(a﹣1000)≥5000000,解得:a≥1900.答:2017年该地至少有1900户享受到优先搬迁租房奖励.4、(2018•东平县二模)某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?第3页(共7页)(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).解:(1)设售价应为x元,依题意有1160﹣≥1100,解得x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.5、(2018•重庆模拟)“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m%,求m的值.解:(1)设原时速为xkm/h,通车后里程为ykm,则有:,解得:.答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:8(80+120)(1﹣m%)(1+m%)=1600,解得:m1=10,m2=0(不合题意舍去).答:m的值为10.6、(2018•北碚区校级模拟)春漫三月,春茶飘香,重庆市永川区某茶叶基地碧绿连绵、碧浪汹涌,株株茶树冒出了新绿,此茶叶基地生产永川秀芽A,B两个品种,今年A品种每千克售价80元,B品种每千克售价100元,该地茶农今年收获A,B两个品种共500吨,其中A品种的产量不超过B品种产量的9倍.(1)该茶农今年收获B品种至少多少吨?第4页(共7页)(2)该茶农去年将A,B两个品种的茶叶全部运往市场销售,去年A,B的总产量与今年相同,而今年该茶农将收获的A,B两个品种的茶叶全部放在网店销售,且两年都全部售完去年B品种的市场销量在(1)的条件下的最低产量下减少了2m%,售价在今年的基础上增加%,去年A品种的售价与今年相同,去年向市场的运输成本一共为2050000元,今年B品种的销量为(1)中B品种的最低产量,结果去年的利润比今年减少%,求m的值.解:(1)设该茶农今年收获B品种茶叶x吨,则收获A品种茶叶(500﹣x)吨,根据题意得:500﹣x≤9x,解得:x≥50.答:该茶农今年收获B品种茶叶至少50吨.(2)根据题意得:50×(1﹣2m%)×100×1000(1+%)+[500﹣50(1﹣2m%)]×80×1000﹣2050000=[50×100×1000+(500﹣50)×80×1000]×(1﹣%),整理得:m2﹣420m+4100=0,解得:m1=10,m2=410(不合题意,舍去).答:m的值为10.7、(2018•九龙坡区校级模拟)江南五月碧苍苍,“四时之果”枇杷黄.每年五月到六月正是枇杷成熟的季节,大街小巷到处可见金灿灿、黄橙橙的枇杷,让人直咽口水.枇杷不仅柔甜多汁,甘酸适口,而且有不错的药用价值,深受市民的喜爱的是“大五星”枇杷和“白玉”枇杷.“重庆百果园”水果超市5月上旬购进“大五星”枇杷和“白玉”枇杷共1000千克,进价均为每千克32元,然后“白玉”枇杷以60元/千克、“大五星”枇杷以48元/千克的价格很快售完.(1)若超市5月上旬售完所有枇杷获利不低于23200元,求购进“白玉”枇杷至少多少千克?(2)因气温日趋升高,枇杷成熟速度快,而“白玉”枇杷过熟后口味变淡,宜适时品尝,在进价不变的情况下,该超市五月中旬决定调整价格,将“白玉”枇杷的售价在五月上旬的基础上下调m%(降价后售价不低于进价),“大五星”枇杷的售价在五月上旬的基础上上涨m%;同时,与(1)中获利最低利润的销售量相比,“白玉”枇杷的销售量下降了m%,“大五星”枇杷的销售量上升了25%,结果五月中旬的销售额比(1)中获利最低利润的销售额增加了800元,求m的值.解:(1)设购进“白玉”枇杷x千克,则购进“大五星”枇杷(1000﹣x)千克,根据题意可得:(60﹣32)x+(48﹣32)(1000﹣x)≥23200,解得:x≥600,答:购进“白玉”枇杷600千克;第5页(共7页)(2)五月中旬的销售额=600×60+400×48+800=56000,60(1﹣m%)×600(1﹣m%)+48(1+m%)×400(1+25%)=56000,令m%=t,整理得:15t2﹣13t+2=0,解得:t1=,t2=,当t=时,售价=60×(1﹣)=20<32(不合题意舍去);当t=时,售价=60×(1﹣)=48>32;当m%=,解得:m=20故m=20.8、(2018•江北区模拟)每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的某款沙发每套成本为5000元,在标价8000元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售相同的沙发,其成本、标价与甲卖家一致,以前每周可售出5套,现乙卖家先将标价提高m%,再大幅降价40m元,使得这款沙发在3月15日那一天卖出的数量就比原来一周卖出的数量增加了m%,这样一天的利润达到了31250元,求m.解:(1)设降价x元,才能使利润率不低于20%,根据题意得:8000×0.9﹣x﹣5000≥5000×20%,解得:x≤1200.答:最多降价1200元,才能使利润率不低于20%.(2)根据题意得:[8000(1+m%)﹣40m﹣5000]×5(1+m%)=31250,整理得:m2+275m﹣16250=0,解得:m1=50,m2=﹣325(不合题意,舍去).答:m的值为50元.9、(2018•重庆模拟)两江新区作为重庆自由贸易试验区的核心区,精加工产业发展迅速,区内某公司今年1月初以20元/套的进价购进了某种毛坯件12000套,精加工后,产品在2月份进行试销.(1)若售价为40元/套,则可全部售出;若每套涨价0.1元,销售量就减少2套.据了解,该公司在2月份销售了不低于11800套此种产品,求该产品的售价最高为多少元;(2)由于2月该产品热销,2月底该公司再次购进此种毛坯件,此次进价比1月初的进价每套增加了35%,精加工后,在4月份进行销售,4月份的销售量比1月初的进货量增加第6页(共7页)了a%(a>0),但售价比2月份在(1)条件下的最高售价减少了a%,结果4月份此种产品的利润为252000元,求a的值.解:(1)设售价为x元,根据题意得12000﹣10(x﹣40)≥11800解得x≤60答:该产品的售价最高为60元(2)根据题意得12000(1+a%)[60()﹣20(1+35%)]=252000设t=a%原方程可化为12000(1+t)[60(1﹣)﹣20(1+35%)]=252000解得t1=≈0.919