122.1一元二次方程(教案)教学内容本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.教学目标知识技能探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识。数学思考在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系。解决问题培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养。情感态度通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.重难点、关键重点:一元二次方程的定义、各项系数的辨别,根的作用.难点:根的作用的理解.关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、情境引入【问题情境】问题1如图,有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为xcm,则盒底的长为,宽为.根据方盒的底面积为3600cm2,得方程为_______________,,整理,得问题2要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?分析:全部比赛共4×7=28场设应邀请x个队参赛,每个队要与其他_____个队各赛1场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共______________场.得方程____________________________0350752xx0350752xx562xx562xx2整理,得【活动方略】教师演示课件,给出题目.学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题.【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.二、探索新知【活动方略】学生活动:请口答下面问题.(1)上面两个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.【设计意图】主体活动,探索一元二次方程的定义及其相关概念.三、范例点击例1将方程3(1)5(2)xxx化成一元二次方程的一般形式,并指出各项系数.解:去括号得233510xxx,移项,合并同类项,得一元二次方程的一般形式238100xx.其中二次项系数是3,一次项系数是-8,常数项是-10.【活动方略】学生活动:学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.教师活动:在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题).【设计意图】进一步巩固一元二次方程的基本概念.例2猜测方程2560xx的解是什么?【活动方略】学生活动:学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x=1、2、3、4、5等,发现x=8时等号成立,于是x=8是方程的一个解,如此等等.教师活动:教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结:使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).3【设计意图】探究一元二次方程根的概念以及作用.四、跟踪训练。1将方程4x(x-2)=25化为一元二次方程的一般形式______________,其中二次项系数是_____,一次项系数是_____,常数项是_____。2关于x的方程(m2-9)x2+(m-3)x+5=0(1)当m取何值时是一元二次方程?(2)当m取何值时是一元一次方程?3教材P27练习2(把答案写在下面)(1)(2)(3)4.你能根据所学过的知识解出下列方程的解吗?(1)2360x;(2)2490x.【活动方略】教师活动:操作投影,将答案显示,组织学生讨论.学生活动:合作交流,讨论解答。【设计意图】使学生进一步理解一元二次方程的概念,对一元二次方程的根有更深刻的理解.五当堂抽测1.方程2(x+3)=5,化成一般形式是________.其中二次项系数为____________,一次项系数为____________,常数项为________。2.若方程kx2+x=1是一元二次方程,则k的取值范围是_________.3.如果两个连续偶数的积是168,求这两个偶数,如果设其中较小偶数为x,可列出方程______________.化成一般形式是________4.若关于x的方程(m+3)27mx+(m-5)x+5=0是一元二次方程,那么m的值为()A.±3B.3C.-3D.都不对5.以-2为根的一元二次方程是()A.x2+2x-x=0B.x2-x-2=0C.x2+x+2=0D.x2+x-2=0【活动方略】学生独立思考、独立解题,教师巡视.【设计意图】检查学生对基础知识的掌握情况.六小结作业1.问题:本节课你学到了什么知识?从中得到了什么启发?(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用;4(3)一元二次方程根的概念以及作用2.作业:课本习题22.11(2)(4)(6)567。【活动方略】教师引导学生归纳小结,学生反思学习和解决问题的过程.学生独立完成作业,教师批改、总结.【设计意图】通过归纳总结,课外作业,使学生优化概念,内化知识。22.3实际问题与一元二次方程(2)惠东中学侯红梅教学目标1、本节课主要学习建立一元二次方程的数学模型解决平均变化率问题。2、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.3、能根据具体问题的实际意义,检验结果是否合理.4、通过用一元二次方程解决身边的问题,体会数学知识应用的价值.重难点、关键重点:列一元二次方程解有关平均变化率问题的应用题难点:发现平均变体化率问题中的等量关系关键:建立一元二次方程的数学模型教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一展示学习目标(使学生明确本节课学习目标,具体内容如下)学习目标1、本节课主要学习建立一元二次方程的数学模型解决平均变化率问题。52、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.3、能根据具体问题的实际意义,检验结果是否合理.4、通过用一元二次方程解决身边的问题,体会数学知识应用的价值.二展示学习要求(学生对照要求自学,教师巡视并做个别辅)学习要求1、某农户第一年的粮食产量为6万kg,平均每年的增长率为20%,第二年的产量为____________万kg,第三年的产量为____________万kg;某商品原价每件100元连续两次降价,平均每次降低率为10%,第一次降价后价格为每件________元,第二次降价后价格为每件________元通过以上两题你能发现关于两次平均增长(降低)率问题的一般关系吗?(用A表示基数,X表示平均增长(降低)率,B表示新数)2、学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.设年平均增长率为X,则可列方程为____________。3、对照课本46页探究2内容,完成下列问题:(1)甲种药品成本的年平均下降额为元,乙种药品成本的年平均下降额为元,显然,乙种药品成本的年平均下降额较.(2)设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为元,两年后甲种药品成本为元.从而可列方程为。解得X=。请求出乙种药品成本的年平均下降率,并比较两种药品成本的年平均下降率。4、完成P46最后的“思考”:成本下降额较大的药品,成本下降率一定也较大吗?三后教1、学习小组同学之间互教,解决自学过程中存在的问题;62、教师引导学生解决学习要求中的问题,对同学普遍存在的问题请会解决的小组代表回答,学生解决不了的问题教师进一步强调并重点点评。四当堂训练列方程解运用题练习1、某钢铁厂去年1月某种钢产量为5000吨,3月上升到7200吨,这两个月平均每月增长的百分率是多少?练习2、某种药剂原售价为4元,经过两次降价,现在每瓶售价为2.56元,问平均每次降价百分之几?五小结(通过提问引导学生回答)(一)列方程解应用题的一般步骤是:审、设、列、解、验、答1、审:审清题意:已知什么,求什么?2、设:设未知数,语句要完整,有单位(同一)的要注明单位;3、列:列代数式,找出相等关系列方程;4、解:解所列的方程;5、验:是否是所列方程的根;是否符合题意;6、答:答案也必需是完整的语句,注明单位且要贴近生活.列方程解应用题的关键是:找出相等关系.(二)关于两次平均增长(降低)率问题的一般关系:A(1±x)2=B(其中A表示基数,x表表示增长(或降低)率,B表示新数)六布置作业:1完成课本P48页综合运用第7题2完成课本P53页综合运用第9题728.1锐角三角函数(1)正弦惠东中学陈岸鹏要素设计内容教学内容分析教科书首先设置了一个实际问题,把这个实际问题抽象成数学问题,通过思考、探究,得到“在直角三角形中,当锐角的度数一定时,不管三角形的大小如何,这个角的对边与斜边的比是一个固定值。由此引出正弦函数的概念。教学目标知识与技能1、经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实,从而理解正弦的概念。2、能根据正弦概念正确进行计算过程与方法通过思考和探究,让学生发现“这个角的对边与斜边的比是一个固定值”的过程。情感态度价值观引导学生通过探索数量的比值关系,发现规律,从而培养学习数学的兴趣。学情分析学生初次接触“正弦”的概念,是很难理解的,注意加强对数量关系的比较、分析。教学分析教学重点理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值教学难点难点当直角三角形的锐角固定时,它的对边与斜边的比值是固定值的事实。解决办法结合图形,从实际例子入手,引导学生仔细观察、比较、分析,总结规律。策略采用一张纸教学方式,让学生通过这一张纸,讨论,交流,掌握这节课的重点教学过程教学程序一张纸的教学内容一、创设情景,确定目标(3-5分钟)1.问题情境比萨斜塔,历经几百年斜而不倒,你知道这是为什么吗?主要原因是它的倾斜角度在安全的范围内,而计算这个倾斜角度就与我们这章的学习内容有关,目前,这个倾斜角度到底是多少度?学了这一章之后你就会求这个倾斜角的度数了。本章的学习也为今后高中的学习打下基础。8CBA斜边c对边abCBA(2)1353CBA(1)34CBA二、自主探究,合作交流,建构知识(20-25分钟)活动1:问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?活动2:思考1:如果使出水口的高度为50m,那么需要准备多长的水管?;如果使出水口的高度为am,那么需要准备多长的水管?;结论:直角三角形中,30°角的对边与斜边的比值思考2:在Rt△ABC中,∠C=90°,∠