因子分析SPSS操作

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

因子分析作业:全国30个省市的8项经济指标如下:要求:先对数据做标准化处理,然后基于标准化数据进行以下操作1、给出原始变量的相关系数矩阵;2、用主成分法求公因子,公因子的提取按照默认提取(即特征值大于1),给出公因子的方差贡献度表;3、给出共同度表,并进行解释;4、给出因子载荷矩阵,据之分析提取的公因子的实际意义。如果不好解释,请用因子旋转(采用正交旋转中最大方差法)给出旋转后的因子载荷矩阵,然后分析旋转之后的公因子,要求给各个公因子赋予实际含义;5、先利用提取的每个公因子分别对各省市进行排名并作简单分析。最后构造一个综合因子,计算各省市的综合因子的分值,并进行排序并作简单分析。1、输入数据,依次点选分析描述统计描述,将变量x1到x8选入右边变量下面,点选“将标准化得分另存为变量”,点确定即可的标准化的数据。依次点选分析降维因子分析,打开因子分析窗口,将标准化的8个变量选入右边变量下面,点选描述相关矩阵下选中系数及KMO和Bartlett的检验,点继续,确定,就可得出8个变量的相关系数矩阵如下图。由表中数据可以看出大部分数据的绝对值都在0.3以上,说明变量间有较强的相关性。KMO和Bartlett的检验取样足够度的Kaiser-Meyer-Olkin度量。.621Bartlett的球形度检验近似卡方231.420df28Sig..000由上图看出,sig.值为0,所以拒绝相关系数为0(变量相互独立)的原假设,即说明变量间存在相关性。2、依次点选在因子分析窗口点选抽取方法:主成分;分析:相关性矩阵;输出:未旋转的因子解,碎石图;抽取:基于特征值(特征值大于1);继续,确定,输出结果如下3个图。解释的总方差成份初始特征值提取平方和载入合计方差的%累积%合计方差的%累积%13.74846.84746.8473.74846.84746.84722.19827.47474.3212.19827.47474.32131.22215.27889.5991.22215.27889.5994.4035.03694.6355.2122.65297.2876.1351.69098.9777.067.84099.8178.015.183100.000提取方法:主成份分析。上表中第一列为特征值(主成分的方差),第二列为各个主成分的贡献率,第三列为累积贡献率,由上表看出前3个主成分的累计贡献率就达到了89.599%85%,所以选取主成分个数为3。选y1为第一主成分,y2为第二主成分,y3为第三主成分。且这三个主成分的方差和占全部方差的89.599%,即基本上保留了原来指标的信息。这样由原来的8个指标变为了3个指标。由上图看出,成分数为3时,特征值的变化曲线趋于平缓,所以由碎石图也可大致确定出主成分个数为3。与按累计贡献率确定的主成分个数是一致的。3、共同度结果如下:公因子方差初始提取Zscore:国内生产1.000.945Zscore:居民消费1.000.800Zscore:固定资产1.000.902Zscore:职工工资1.000.873Zscore:货物周转1.000.858Zscore:消费价格1.000.957Zscore:商品零售1.000.929Zscore:工业产值1.000.904提取方法:主成份分析。上表给出了该次分析从每个原始变量中提取的信息。由上表数据可以看出,主成分包含了各个原始变量的80%以上的信息。4、在因子分析窗口,旋转输出:载荷阵。输出结果如下:成份矩阵a成份123Zscore:国内生产.885.384.119Zscore:居民消费.606-.597.276Zscore:固定资产.912.162.211Zscore:职工工资.467-.722.365Zscore:货物周转.486.737-.280Zscore:消费价格-.500.257.801Zscore:商品零售-.619.596.437Zscore:工业产值.823.427.208提取方法:主成分分析法。a.已提取了3个成份。由上表数据第一列表明:第一主成分与各个变量之间的相关性;第二列表明:第二主成分与各个变量之间的相关性;第三列表明:第三主成分与各个变量之间的相关性。可以得出:x1x3x8主要由第一主成分解释,x4x5主要由第二主成分解释,x6主要由第三主成分解释。但是x2是由第一主成分还是第二主成分解释不好确定,x7是由三个主成分中的哪个解释也不好确定。下面作因子旋转后的因子载荷阵。在因子分析窗口,抽取输出:旋转的因子解,继续;旋转方法:最大方差法,继续;确定。输出结果如下2图;旋转成份矩阵a成份123Zscore:国内生产.955.126-.128Zscore:居民消费.218.843-.207Zscore:固定资产.872.353-.134Zscore:职工工资.051.926-.116Zscore:货物周转.753-.505-.191Zscore:消费价格-.129-.008.970Zscore:商品零售-.104-.497.819Zscore:工业产值.944.111-.012提取方法:主成分分析法。旋转法:具有Kaiser标准化的正交旋转法。a.旋转在5次迭代后收敛。由上表数据可以得出:x1x3x5x8主要由第一主成分解释,x2x4主要由第二主成分解释,x6x7主要由第三主成分解释。与第一因子关系密切的变量主要是投入(投资:固定资产投资)与产出(产值:国内生产总值、工业总产值)方面的变量,货物周转又是投入产出的中介过程,可以命名为投入产出因子;与第二因子关系密切的都是反映民众生活水平的变量,可以命名为消费能力因子;与第三因子关系密切的是价格指数方面的变量,可以命名为价格指数因子。解释的总方差成份初始特征值旋转平方和载入合计方差的%累积%合计方差的%累积%13.74846.84746.8473.20740.08940.08922.19827.47474.3212.22227.77067.85931.22215.27889.5991.73921.74089.5994.4035.03694.6355.2122.65297.2876.1351.69098.9777.067.84099.8178.015.183100.000提取方法:主成份分析。由上表可以看出:第二列数据表明,各个主成分的贡献率与旋转前的有变化,但是3个主成分的累积贡献率相同都是89.599%。5、在因子分析窗口,得分因子得分保存为变量f1f2f3;方法:回归。再按三个主成分降序排列:数据排序个案:将f1选入排序依据,排列顺序:降序。同理得出按f2f3排序的结果。结果如下;最后,以各因子的方差贡献率占三个因子总方差贡献率的比重作为权重进行加权汇总,得出各城市的综合得分f。即f=(0.40089*f1+0.277*f2+0.2174*f3)/0.89599f得分在转换计算变量中的出。最后再按f得分排序。排序结果如下:f1排序f2排序f3排序f排序2.11763山东3.66094上海2.07204云南1.62上海2.03281江苏1.6829广东1.69291贵州0.95山东1.48171广东1.58836北京1.28542湖北0.95江苏1.22895河北0.99048天津1.16111新疆0.88广东1.10693四川0.74993浙江0.98784四川0.58四川1.07313河南0.6314西藏0.90343陕西0.5湖北0.96184辽宁0.27409福建0.84557上海0.44浙江0.65225浙江0.26647江苏0.77625甘肃0.42云南0.60326上海0.18476青海0.62601广西0.25北京0.60136湖北0.11802新疆0.53464湖南0.14辽宁0.26238湖南0.04579云南0.47211青海0.09湖南0.23633黑龙江0.00117海南0.25513山东0.07新疆-0.06617安徽-0.15123宁夏0.21824内蒙-0.02贵州-0.26842福建-0.19777山东-0.00481西藏-0.05河南-0.28002云南-0.27211广西-0.0403江西-0.05广西-0.28376广西-0.29037甘肃-0.13117宁夏-0.12陕西-0.36466山西-0.29779湖北-0.13995山西-0.12河北-0.39638北京-0.34462贵州-0.17691江苏-0.16黑龙江-0.41389陕西-0.37617黑龙江-0.25054北京-0.23甘肃-0.47727内蒙-0.39701吉林-0.32565浙江-0.24福建-0.51327吉林-0.43068辽宁-0.46473河南-0.4山西-0.56026江西-0.52044湖南-0.57616黑龙江-0.42青海-0.57753新疆-0.52561四川-0.61312辽宁-0.43内蒙-0.74551甘肃-0.53203陕西-0.78714河北-0.47江西-0.76636贵州-0.66221山西-0.79854福建-0.5天津-0.88229天津-0.68江西-0.94379吉林-0.52西藏-1.34465青海-0.79471安徽-1.1953广东-0.59吉林-1.35668宁夏-0.88339内蒙-1.50695安徽-0.66安徽-1.46804海南-1.3165河南-1.62403天津-0.69宁夏-1.59344西藏-1.52165河北-2.25163海南-1.23海南有了对各个公因子的合理的解释,结合各个城市在三个公因子的得分和综合得分,就可对各城市的经济发展水平进行评价了。在投入产出因子f1上得分最高的6个城市是山东、江苏、广东、河北、四川。其中山东得分为2.11763,江苏得分为2.03281,高于其他城市,说明山东、江苏的工业的投入产出能力最高,工业发展相对较快,从而推动城市发展;而青海、宁夏、海南、西藏的投入产出能力较差,可能由于地理位置的缘故工业发展相对落后。上海、广东、北京、天津在消费能力因子f2上的得分较高,说明它们的消费能力较高,人们的收入也较高,从而生活质量较好,城市发展较快;而河南、河北得分较低,它们的消费能力较低,从而说明人们的收入也相对较低,生活质量相对差一点,城市发展较慢。云南、贵州、湖北、新疆在价格指数因子f3上的得分较高,说明在这些城市物价相对较高,可能以些非本地产的东西由于运输的不方便,使得这些物价相对较高,而广东、安徽、天津、海南的价格指数较低,说明,在这些城市,交通相对便捷,运输方便,或者本地产的东西较多基本满足需求,使得物价相对较低,但从侧面也可看出这些城市与其他城市的联系可能较少,不利于自己的总和发展,从而也说明了这些城市的发展相对较慢。由综合因子f的分就可综合评价城市的经济发展水平,综合得分的前3名上海、山东、江苏,得分最低的3个城市安徽、宁夏、海南。

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功