20.2组合的概念

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

排列数公式(1):)*,,)(1()2)(1(nmNnmmnnnnAmn当m=n时,123)2)(1(nnnAnn!nAnn排列数公式(2):)!(!mnnAmn1!020.2组合数的概念铜山中专幼教部对口升学二年级课件制作人李巧玲2016.5.9问题一:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题二:从甲、乙、丙3名同学中选出2名去参加某天一项活动,有多少种不同的选法?情境创设从已知的3个不同元素中每次取出2个元素,并成一组问题二从已知的3个不同元素中每次取出2个元素,按照一定的顺序排成一列.问题一排列组合有顺序无顺序一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.排列与组合的概念有什么共同点与不同点?概念讲解组合定义:思考一:ab与ba是相同的排列还是相同的组合?为什么?思考二:两个相同的排列有什么特点?两个相同的组合呢?概念理解思考三:组合与排列有联系吗?1.从a,b,c三个不同的元素中取出两个元素的所有组合分别是:ab,ac,bc(3个)2.已知4个元素a,b,c,d,写出每次取出两个元素的所有组合.abcdbcdcdab,ac,ad,bc,bd,cd(6个)概念理解判断下列问题是组合问题还是排列问题?(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的子集有多少个?(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票?有多少种不同的火车票价?组合问题排列问题(3)10人聚会,见面后每两人之间要握手相互问候,共需握手多少次?组合问题组合问题组合是选择的结果,排列是选择后再排序的结果.例.写出从a,b,c,d四个元素中任取三个元素的所有组合。练一练不写出所有组合,怎样才能知道组合的种数?mnC如何计算:组合排列abcabdacdbcdabcbaccabacbbcacbaabdbaddabadbbdadbaacdcaddacadccdadcabcdcbddbcbdccdbdcb(三个元素的)1个组合,对应着6个排列你发现了什么?344C第一步,()个;336A第二步,()个;333.434CAA根据分步计数原理,334343ACA从而34A对于,我们可以按照以下步骤进行从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示.mnC246C如:从a,b,c三个不同的元素中取出两个元素的所有组合个数是:如:已知4个元素a、b、c、d,写出每次取出两个元素的所有组合个数是:概念讲解组合数注意:是一个数,应该把它与“组合”区别开来.mnC组合数公式:(1)(2)(1)!mmnnmmAnnnnmCAm!!()!mnnCmnm01.nC我们规定:概念讲解这里,且,这个公式叫做组合数公式.*Nnm、nm例1计算:⑴47C⑵710C32(3),nnnCA已知求.例2.甲、乙、丙、丁4支足球队举行单循环赛,(1)列出所有各场比赛的双方;(2)列出所有冠亚军的可能情况.例题分析例3.从2,3,5这三个数中,每次取出2个不同的数相乘,有多少个不同的积练习.(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?例题分析mnC3.10名学生,7人扫地,3人推车,那么不同的分工方法有种;组合应用【练习】1.用m、n表示2.从8名乒乓球选手中选出3名打团体赛,共有种不同的选法;如果这三个选手又按照不同顺序安排,有种方法.例4.在产品检验中,常从产品中抽出一部分进行检查.现有100件产品,其中3件次品,97件正品.要抽出5件进行检查,根据下列各种要求,各有多少种不同的抽法?(1)无任何限制条件;(2)全是正品;(3)只有2件正品;(4)至少有1件次品;(5)至多有2件次品;(6)次品最多.解答:5100C(1)597C(2)23973CC(3)5510097CC(4)413223973973973CCCCCC,或(5)504132973973973CCCCCC23973CC(6)96979999CC练习(1)求的值组合数的性质mnmnnCC(1)11mmmnnnCCC(2)221717xxCC(2)求满足的x值11122mmmmnnnnCCCC(3)求证:①129999CCC(4)求的值1617005或2511幼教部对口升学二年级授课教师:李巧玲组合与组合数通过前面的学习,我们已经知道了组合的定义,组合数及其一些性质和组合与排列的关系。今天我们将在此基础上,继续学习它们的一些应用(一)组合数的公式及其性质:(1)(2)(1)!mmnnnmAnnnnmCAm!!()!mnnCmnm组合数性质1:mnmnnCC11mmmnnnCCC2:01nnnCC特别地:______,4A3A2918nnn则已知7__________3337410ACC0________,231010xCCxx则1,或3_______9910098999799CCC5050练习一129999CCC(5)求的值(1)(2)(3)(4)511例8.6本不同的书,按下列要求各有多少种不同的选法:(1)分给甲、乙、丙三人,每人2本;例题解读:解:(1)根据分步计数原理得到:22264290CCC种例8.6本不同的书,按下列要求各有多少种不同的选法:(2)分为三份,每份2本;解析:(2)分给甲、乙、丙三人,每人两本有种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙、丙三名同学有种方法.根据分步计数原理所以.222642CCC33A可得:22236423CCCxA2226423315CCCxA例題解读:因此,分为三份,每份两本一共有15种方法所以.点评:本题是分组中的“均匀分组”问题.一般地:将mn个元素均匀分成n组(每组m个元素),共有mmmmnmnmmnnCCCA种方法例8.6本不同的书,按下列要求各有多少种不同的选法:(3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;解:(3)这是“不均匀分组”问题,一共有种方法.12365360CCC(4)在(3)的基础上再进行全排列,所以一共有种方法.12336533360CCCA例题解读:例8.6本不同的书,按下列要求各有多少种不同的选法:(5)分给甲、乙、丙三人,每人至少1本解:(5)可以分为三类情况:①“2、2、2型”的分配情况,有种方法;22264290CCC②“1、2、3型”的分配情况,有种方法;12336533360CCCA③“1、1、4型”,有种方法,436390CA所以,一共有90+360+90=540种方法.例题解读:1.按元素的性质进行分类、按事件发生的连续过程分步,是处理组合应用题的基本思想方法;2.对于有限制条件的问题,要优先安排特殊元素、特殊位置;3.对于含“至多”、“至少”的问题,宜用排除法或分类解决;4.按指定的一种顺序排列的问题,实质是组合问题.课堂小结再次强调由排列的定义可知,排列中的元素不重复,排列与元素的顺序有关,这是排列的两个基本特征.而组合中元素取出与顺序无关

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功