第1页(共15页)2018-2019学年吉林省长春市南关区东北师大附中明珠学校七年级(下)期末数学试卷一、选择题(本大题共有8道小题.每小题3分,共24分)1.(3分)下面四幅作品分别代表二十四节气中的“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A.B.C.D.2.(3分)如图,将△ABC沿BC方向平移1cm得到△DEF,若△ABC的周长为8cm,则四边形ABFD的周长为()A.8cmB.9cmC.10cmD.11cm3.(3分)如图,∠ACD=105°.∠A=70°,则∠B的大小是()A.25°B.35°C.45°D.65°4.(3分)小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状不可以是()A.正三角形B.正四边形C.正五边形D.正六边形5.(3分)如图,将△ABC就点C按逆时针方向旋转75°后得到△A′B′C,若∠ACB=25°,则∠BCA′的度数为()第2页(共15页)A.50°B.40°C.25°D.60°6.(3分)如果一个三角形的两边长分别为2和5,则第三边长可能是()A.2B.3C.5D.87.(3分)如图,已知AB=DE,∠B=∠DEF,下列条件中不能判定△ABC≌△DEF的是()A.∠A=∠DB.AC∥DFC.BE=CFD.AC=DF8.(3分)如图,在△ABC中,∠B=45°,AC的垂直平分线交AC于点D.交BC于点E,且∠BAE与∠EAC的比为4:1,则∠C的度数为()A.20°B.22.5°C.25°D.30°二、填空题(本大题共有6道小题,每小题3分,共18分)9.(3分)在△ABC中,∠A:∠B:∠C=4:3:2.则∠A=度.10.(3分)东北师大附中校团委组织了职业微体验活动,初一(3)班52名学生分别去科技细和图书馆参观,去科技馆的人数比去图书馆人数的2倍少5人,去图书馆的人数为x人,则可列方程:11.(3分)如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星绕中心O至少旋转度能和自身重合.第3页(共15页)12.(3分)已知等腰三角形的周长为29,一边长为7,则此等腰三角形的腰长为.13.(3分)若不等式组恰有两个整数解,则m的取值范围是.14.(3分)如图,在△ABC中,BF⊥AC于F,AD⊥BC于D,BF与AD相交于E.若AD=BD,BC=8cm,DC=3cm,则AE=cm.三、解答题(共10小题,满分78分)15.(8分)解下列方程(组);(1);(2);16.(8分)解下列不等式(组);(1)3(x﹣1)>5x+1;(2);17.(6分)如图,点F是△ABC的边BC的延长线上一点,FD⊥AB于点D.∠A=30°,∠F=40°,求∠ACB的度数.18.(6分)五月份的第二个星期天是母亲节.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,根据图中提供信息,求每束鲜花和每个礼的价格.第4页(共15页)19.(6分)如图,在正方形网格中,△ABC的三个顶点都在格点上,点O也在格点上.(1)画A′B′C′.使△A′B′C′与△ABC关于直线OP成轴对称.(2)画△A''B''C'',使△A''B''C''与△A′B′C′关于点O成中心对称.20.(6分)如图,点B,F,C,E在同一直线上,AB=DE,BF=CE,AB∥DE,求证,AC=DF.21.(8分)如图,△ABC是等边三角形,点D,E分别在AB,AC边上,且AE=BD.(1)求证:△ABE≌BCD.(2)求∠EFC的度数.22.(8分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本第5页(共15页)工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数100件,月总收入2400元;营业员B:月销售件数150件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3000元,则她当月至少要卖出服装多少件?23.(10分)直角三角形ABC中.∠ACB=90°,直线l过点C(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,AC=6时,如图②,点B与点F关于直线l对称,连接BF,CF.动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动.同时动点N从点F出发.以每秒3个单位的速度沿F→C→B→C→F向终点F运动.点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N作l于点E,设运动时间为t秒.①用含t的代数式表示CN.②直接写出当△MDC与△CEN全等时t的值.24.(12分)已知△ABC和△ADE都是等腰三角形,AB=AC,AD=AE.∠DAE=∠BAC.【初步感知】(1)特殊情形:如图①.若点D,E分别在边AB,AC上,则DBEC.(填“>”、“<”或“=”)(2)发现证明:如图②,将图①中的△ADE绕点A旋转,当点D在△ABC外部,点E在△ABC内部时,求证:DB=EC.【深入探究】(1)如图③,△ABC和△ADE都是等边三角形,点C,E,D在同一条直线上,则∠CDB的度数为线段CE,BD之间的数量关系为;第6页(共15页)(2)如图④,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E在同一直线上,AM为△ADE中DE边上的高.则∠CDB的度数为;线段AM.BD,CD之间的数量关系为;【拓展提升】如图⑤,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,将△ADE绕点A逆时针旋转,连结BE、CD.当AB=5.AD=2时,在旋转过程中,△ABE与△ADC的面积和的最大值为.第7页(共15页)2018-2019学年吉林省长春市南关区东北师大附中明珠学校七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有8道小题.每小题3分,共24分)1.【解答】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选:D.2.【解答】解:∵△ABC沿BC方向平移1cm得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+1+1=10cm.故选:C.3.【解答】解:∵∠ACD=∠B+∠A,∠ACD=105°,∠A=70°,∴∠B=105°﹣70°=35°,故选:B.4.【解答】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.故选:C.5.【解答】解:根据旋转的定义可知旋转角∠ACA′=75°,∴∠BCA′=∠ACA′﹣∠ACB=75°﹣25°=50°.故选:A.第8页(共15页)6.【解答】解:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选:C.7.【解答】解:A、根据ASA判定两个三角形全等;B、根据AAS可以判定两个三角形全等;C、BE=CF则BC=FE,根据SAS即可判定两个三角形全等;D、SSA,不能判定三角形全等.故选:D.8.【解答】解:∵ED是AC的垂直平分线,∴AE=CE,∴∠C=∠EAC,∵∠B=45°,∴∠BAC+∠C=135°,∵∠BAE与∠EAC的比为4:1,∴∠C+∠C+4∠C=135°,∴∠C=22.5°,故选:B.二、填空题(本大题共有6道小题,每小题3分,共18分)9.【解答】解:∵∠A:∠B:∠C=4:3:2,∴可以假设∠A=4x,∠B=3x,∠C=2x,∵∠A+∠B+∠C=180°,∴4x+3x+2x=180°,∴x=20°,∴∠A=80°,故答案为8010.【解答】解:已知去图书馆人数x人,则去科技馆人数为(2x﹣5)人,根据总人数为52人,可列方程x+(2x﹣5)=52.第9页(共15页)故答案为x+(2x﹣5)=52.11.【解答】解:根据题意,五角星的顶点是一个正五边形的五个顶点,这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过4次旋转而得到,每次旋转的度数为360°除以5,为72度.故答案为:7212.【解答】解:若腰长为7,则底边=29﹣2×7=15,∵7+7<15∴不能组成三角形若底边为7,则腰长=(29﹣7)÷2=11故答案为1113.【解答】解:∵不等式组,∴该不等式组的解集为m≤x<2,∵不等式组恰有两个整数解,∴﹣1<m≤0,故答案为:﹣1<m≤0.14.【解答】解:∵BF⊥AC于F,AD⊥BC于D,∴∠CAD+∠C=90°,∠CBF+∠C=90°,∴∠CAD=∠CBF,∵在△ACD和△BED中,,∴△ACD≌△BED,(ASA)∴DE=CD,∴AE=AD﹣DE=BD﹣CD=BC﹣CD﹣CD=2;故答案为2.三、解答题(共10小题,满分78分)第10页(共15页)15.【解答】解:(1)去分母得:2x+1=3x﹣6,解得:x=7;(2),①×3+②得:7x=14,解得:x=2,把x=2代入①得:y=3,则方程组的解为.16.【解答】解:(1)3x﹣3>5x+1,3x﹣5x>1+3,﹣2x>4,x<﹣2;(2)解不等式x+1≥0,得:x≥﹣1,解不等式5x﹣2<3(x+2),得:x<4,则不等式组的解集为﹣1≤x<4.17.【解答】解:在△DFB中,∵FD⊥AB,∴∠FDB=90°,∵∠F=40°,∠F+∠B=90°,∴∠B=90°﹣40°=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°.18.【解答】解:设每束鲜花x元,每个礼盒y元,根据题意得:,解得:.答:每束鲜花12元,每个礼盒20元.第11页(共15页)19.【解答】解:(1)如图△A′B′C′即为所求.(2)如图△A''B''C''即为所求.20.【解答】证明:∵AB∥DE,∴∠B=∠E.∵BF=CE,∴BF+FC=CE+FC,即BC=EF.又AB=DE,∴△ABC≌△DEF(SAS).∴AC=DF.21.【解答】证明:(1)∵△ABC是等边三角形,∴AB=AC,∠A=∠DBC=60°,AE=BD.∴△ABE≌△BCD(SAS);(2)∵△ABE≌△BCD,∴∠ABE=∠BCD.∴∠EFC=∠FBC+∠FCB=∠FBC+∠ABE=∠ABC=60°.22.【解答】解:(1)由题意,得,解得即x的值为1800,y的值为6;第12页(共15页)(2)设某营业员当月卖服装m件,由题意得,1800+6m≥3000,解得,m≥200,∵m只能为正整数,∴m最小为200,即某营业员当月至少要卖200件.23.【解答】(1)证明:△ACD与△CBE全等.理由如下:∵AD⊥直线l,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS);(2)解:①由题意得,AM=t,FN=3t,则CM=8﹣t,由折叠的性质可知,CF=CB=6,∴CN=6﹣3t;②由折叠的性质可知,∠BCE=∠FCE,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD,∴当CM=CN时,△MDC与△CEN全等,当点F沿F→C路径运动时,8﹣t=6﹣3t,解得,t=﹣1(不合题意),当点F沿C→B路径运动时,8﹣t═3t﹣6,解得,t=3.5,第13页(共15页)当点F沿B→C路径运动时,由题意得,8﹣t=18﹣3t,解得,t=5,当点F沿C→F路径运动时,由题意得,8﹣t=3t﹣18,解得,t=6.5,综上所述,当t=3.5秒或5秒或6.5秒时,△MDC与△CEN全等.24.【解答】解:【初步感知】(1)∵DE∥BC,∴=,∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性