2019电大高等数学基础形成性考核手册答案(含题目)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1高等数学基础形考作业1答案:第1章函数第2章极限与连续(一)单项选择题⒈下列各函数对中,(C)中的两个函数相等.A.2)()(xxf,xxg)(B.2)(xxf,xxg)(C.3ln)(xxf,xxgln3)(D.1)(xxf,11)(2xxxg⒉设函数)(xf的定义域为),(,则函数)()(xfxf的图形关于(C)对称.A.坐标原点B.x轴C.y轴D.xy⒊下列函数中为奇函数是(B).A.)1ln(2xyB.xxycosC.2xxaayD.)1ln(xy⒋下列函数中为基本初等函数是(C).A.1xyB.xyC.2xyD.0,10,1xxy⒌下列极限存计算不正确的是(D).A.12lim22xxxB.0)1ln(lim0xxC.0sinlimxxxD.01sinlimxxx⒍当0x时,变量(C)是无穷小量.A.xxsinB.x1C.xx1sinD.2)ln(x⒎若函数)(xf在点0x满足(A),则)(xf在点0x连续。A.)()(lim00xfxfxxB.)(xf在点0x的某个邻域内有定义C.)()(lim00xfxfxxD.)(lim)(lim00xfxfxxxx2(二)填空题⒈函数)1ln(39)(2xxxxf的定义域是,3.⒉已知函数xxxf2)1(,则)(xfx2-x.⒊xxx)211(lim21e.⒋若函数0,0,)1()(1xkxxxxfx,在0x处连续,则ke.⒌函数0,sin0,1xxxxy的间断点是0x.⒍若Axfxx)(lim0,则当0xx时,Axf)(称为时的无穷小量0xx。(三)计算题⒈设函数0,0,e)(xxxxfx求:)1(,)0(,)2(fff.解:22f,00f,11fee⒉求函数21lgxyx的定义域.解:21lgxyx有意义,要求2100xxx解得1020xxx或则定义域为1|02xxx或⒊在半径为R的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数.解:DAROhEBC3设梯形ABCD即为题中要求的梯形,设高为h,即OE=h,下底CD=2R直角三角形AOE中,利用勾股定理得2222AEOAOERh则上底=2222AERh故2222222hSRRhhRRh⒋求xxx2sin3sinlim0.解:000sin3sin33sin3333limlimlimsin2sin2sin22222xxxxxxxxxxxxxxx=133122⒌求)1sin(1lim21xxx.解:21111(1)(1)111limlimlim2sin(1)sin(1)sin(1)11xxxxxxxxxxx⒍求xxx3tanlim0.解:000tan3sin31sin311limlimlim3133cos33cos31xxxxxxxxxxx⒎求xxxsin11lim20.解:22222200011(11)(11)limlimlimsin(11)sin(11)sinxxxxxxxxxxxx020lim0sin111(11)xxxxx⒏求xxxx)31(lim.解:1143331111(1)[(1)]1lim()lim()limlim33311(1)[(1)]3xxxxxxxxxxxexxxexexxx⒐求4586lim224xxxxx.解:2244442682422limlimlim54411413xxxxxxxxxxxxx4⒑设函数1,111,1,)2()(2xxxxxxxf讨论)(xf的连续性。解:分别对分段点1,1xx处讨论连续性(1)1111limlim1limlim1110xxxxfxxfxx所以11limlimxxfxfx,即fx在1x处不连续(2)221111limlim2121limlim111xxxxfxxfxxf所以11limlim1xxfxfxf即fx在1x处连续由(1)(2)得fx在除点1x外均连续高等数学基础作业2答案:第3章导数与微分(一)单项选择题⒈设0)0(f且极限xxfx)(lim0存在,则xxfx)(lim0(C).A.)0(fB.)0(fC.)(xfD.0cvx⒉设)(xf在0x可导,则hxfhxfh2)()2(lim000(D).A.)(20xfB.)(0xfC.)(20xfD.)(0xf⒊设xxfe)(,则xfxfx)1()1(lim0(A).A.eB.e2C.e21D.e415⒋设)99()2)(1()(xxxxxf,则)0(f(D).A.99B.99C.!99D.!99⒌下列结论中正确的是(C).A.若)(xf在点0x有极限,则在点0x可导.B.若)(xf在点0x连续,则在点0x可导.C.若)(xf在点0x可导,则在点0x有极限.D.若)(xf在点0x有极限,则在点0x连续.(二)填空题⒈设函数0,00,1sin)(2xxxxxf,则)0(f0.⒉设xxxfe5e)e(2,则xxfd)(lndxxx5ln2。⒊曲线1)(xxf在)2,1(处的切线斜率是21k。⒋曲线xxfsin)(在)1,2π(处的切线方程是1y。⒌设xxy2,则y)ln1(22xxx⒍设xxyln,则xy1。(三)计算题⒈求下列函数的导数y:⑴xxxye)3(解:xxexxexxy33xxexex212323)3(⑵xxxylncot2解:xxxxxylnlncot22xxxxln2csc2⑶xxyln26解:xxxxxy222lnlnlnxxxx2lnln2⑷32cosxxyx解:23332cos2cosxxxxxyxx4)2(cos3)2ln2sin(xxxxxx⑸xxxysinln2解:xxxxxxxy222sinsinlnsinlnxxxxxxx22sincos)(ln)21(sin⑹xxxylnsin4解:xxxxxylnsinlnsin4xxxxxlncossin43⑺xxxy3sin2解:22233sin3sinxxxxxxxyxxxxxxx2233ln3)(sin)2(cos3⑻xxyxlntane解:xxexeyxxlntantanxxexexx1costan2⒉求下列函数的导数y:⑴xye解:xxxexxeey212121⑵xycosln解:xxxxytancossinsincos1⑶xxxy7解:87xy8187x⑷xy2sin解:xxxxxy2sin2cossin2sinsin2⑸2sinxy解:xxxxycos22cos2⑹2ecosxy解:2222sin2sinxxxxexeeey⑺nxxyncossin解:nxxnxxynncossincossin)sin(sincoscossin1nxxnnxxxnnn⑻xysin5解:xxxxysinsin5cos5lncos5ln5⑼xycose解:xxxexeycoscossinsin⒊在下列方程中,yyx()是由方程确定的函数,求y:⑴yxy2ecos解:yexyxyy22sincosyexxyy22cossin⑵xyylncos解:xyxyyy1.cosln.sin)lnsin1(cosxyxyy⑶yxyx2sin2解:222sin2.cos2yyxyxyyyxyyyxyxyxysin22)cos2(22222cos2sin22xyxyyyxyy8⑷yxyln解:1yyy1yyy⑸2elnyxy解:yyyexy21)2(1yeyxy⑹yyxsine12解:xxeyyyeyy.sin.cos2yeyyeyxxcos2sin⑺3eeyxy解:yyeyexy2323yeeyyx⑻yxy25解:2ln25ln5yxyy2ln215ln5yxy⒋求下列函数的微分yd:(注:dxydy)⑴xxycsccot解:xxxycotcsccsc2dxxxxdy)sincoscos1(22⑵xxysinln解:yxxxxx2sincoslnsin1dxxxxxxdy2sincoslnsin1⑶xy2sin解:xxycossin2xdxxdycossin2⑹xyetan解:xxeey2secdxeedxeedyxxxx22secsec339⒌求下列函数的二阶导数:⑴xy解:2121xy2323412121xxy⑵xy3解:3ln3xyxxy33ln3ln33ln2⑶xyln解:xy121xy⑷xxysin解:xxxycossinxxxxxxxysincos2sincoscos(四)证明题设)(xf是可导的奇函数,试证)(xf是偶函数.证:因为f(x)是奇函数所以)()(xfxf两边导数得:)()()()1)((xfxfxfxf所以)(xf是偶函数。高等数学基础形考作业3答案:第4章导数的应用(一)单项选择题⒈若函数)(xf满足条件(D),则存在),(ba,使得abafbff)()()(.A.在),(ba内连续B.在),(ba内可导C.在),(ba内连续且可导D.在],[ba内连续,在),(ba内可导⒉函数14)(2xxxf的单调增加区间是(D).A.)2,(B.)1,1(C.),2(D.),2(⒊函数542xxy在区间)6,6(内满足(A).A.先单调下降再单调上升B.单调下降10C.先单调上升再单调下降D.单调上升⒋函数)(xf满足0)(xf的点,一定是)(xf的(C).A.间断点B.极值点C.驻点D.拐点⒌设)(xf在),(ba内有连续的二阶导数,),(0bax,若)(xf满足(C),则)(xf在0x取到极小值.A.0)(,0)(00xfxfB.0)(,0)(00xfxfC.0)(,0)(00xfxfD.0)(,0)(00xfxf⒍设)(xf在),(ba内有连续的二阶导数,且0)(,0)(xfxf,则)(xf在此区间内是(A).A.单调减少且是凸的B.单调减少且是凹的C.单调增加且是凸的D.单调增加且是凹的(二)填空题⒈设)(xf在),(ba内可导,),(0ba

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功