2015-2017理科数学真题及答案解析全国卷一

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

\2015年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。考试用时120分钟。注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。1.设复数z满足1+z1z=i,则|z|=(A)1(B)2(C)3(D)22.sin20°cos10°-con160°sin10°=(A)32(B)32(C)12(D)123.设命题P:nN,2n2n,则P为(A)nN,2n2n(B)nN,2n≤2n(C)nN,2n≤2n(D)nN,2n=2n4.投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)0.648(B)0.432(C)0.36(D)0.3125.已知M(x0,y0)是双曲线C:2212xy上的一点,F1、F2是C上的两个焦点,若1MF2MF<0,则y0的取值范围是\(A)(-33,33)(B)(-36,36)(C)(223,223)(D)(233,233)6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛7.设D为ABC所在平面内一点3BCCD,则(A)1433ADABAC(B)1433ADABAC(C)4133ADABAC(D)4133ADABAC8.函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(),k(b)(),k(C)(),k(D)(),k\9.执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5(B)6(C)7(D)810.25()xxy的展开式中,52xy的系数为(A)10(B)20(C)30(D)6011.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。若该几何体的表面积为16+20,则r=(A)1(B)2(C)4(D)812.设函数f(x)=ex(2x-1)-ax+a,其中a1,若存在唯一的整数x0,使得f(x0)0,则a的取值范围是()A.[32e,1)B.[33,24e)C.[33,24e)D.[32e,1)二、填空题:本大题共3小题,每小题5分13.若函数f(x)=xln(x+2ax)为偶函数,则a=14.一个圆经过椭圆错误!未找到引用源。的三个顶点,且圆心在x轴上,则该圆的标准方程为.2rr正视图正视图俯视图r2r\15.若x,y满足约束条件10040xxyxy,则yx的最大值为.16.在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是.三.解答题:解答应写出文字说明,证明过程或演算步骤。17.(本小题满分12分)Sn为数列{an}的前n项和.已知an0,(Ⅰ)求{an}的通项公式:(Ⅱ)设,求数列}的前n项和18.如图,,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC。(1)证明:平面AEC⊥平面AFC(2)求直线AE与直线CF所成角的余弦值19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x1和年销售量y1(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。xyw11x(x1-x)211x(w1-w)211x(x1-x)(y-y)11x(w1-w)(y-y)46.656.36.8289.81.61469108.8表中w1=x1,,w=18111xw(1)根据散点图判断,y=a+bx与y=c+dx哪一个适宜作为年销售量y关于年宣传费\x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y-x。根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1v1),(u2v2)……..(unvn),其回归线v=u的斜率和截距的最小二乘估计分别为:20.(本小题满分12分)在直角坐标系xoy中,曲线C:y=24x与直线y=ks+a(a0)交与M,N两点,(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;(Ⅱ)y轴上是否存在点P,使得当K变动时,总有∠OPM=∠OPN?说明理由。21.(本小题满分12分)已知函数f(x)=31,()ln4xaxgxx(Ⅰ)当a为何值时,x轴为曲线()yfx的切线;(Ⅱ)用min,mn表示m,n中的最小值,设函数()min(),()(0)hxfxgxx,讨论h(x)零点的个数请考生在22、23、24三题中任选一题作答。注意:只能做所选定的题目。如果多做,则按所做第一个题目计分,做答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑。22.(本题满分10分)选修4-1:几何证明选讲如图,AB是☉O的直径,AC是☉C的Q切线,BC交☉O于E\(I)若D为AC的中点,证明:DE是O的切线;(II)若OA=CE,求∠ACB的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系O中。直线1C:=2,圆2C:22121,以坐标原点为极点,轴的正半轴为极轴建立极坐标系。(I)求1C,2C的极坐标方程;(II)若直线3C的极坐标方程为4R,设2C与3C的交点为M,N,求2CMN的面积24.(本小题满分10分)选修4—5:不等式选讲已知函数=|x+1|-2|x-a|,a0.(Ⅰ)当a=1时,求不等式f(x)1的解集;(Ⅱ)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围\2016年普通高等学校招生全国统一考试理科数学本试题卷共5页,24题(含选考题),全卷满分150分,考试用时120分钟注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。用2B铅笔将答题卡上试卷类型A后的方框涂黑。2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非答题区域均无效。3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4、选考题作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。5、考试结束后,请将本试题卷和答题卡一并上交。一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)设集合A=24+30xx,B=|230xx,则AB=(A)33,2(B)33,2(C)31,2(D)3,32(2)设+(1i)x=1+yi,期中x,y是实数,则|x+yi|=(A)1(B)2(C)3(D)2(3)一直等差数列{an}前9项的和为27,10a=8,则100a=(A)100(B)99(C)98(D)97(4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车的时间不超过10分钟的概率是(A)13(B)12(C)23(D)34(5)已知方程2222xy-=1n+n3n-n表示双曲线,且该双曲线两焦点的间的距离为4,则n的取值范围是\(A)(-1,3)(B)(-1,3)(C)(0,3)(D)(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是283,则它的表面积是(A)17(B)18(C)20(D)28(7)函数22xyxe在[-2,2]的图像大致为(8)若loglogabcc1ab,01c,则(A)ccab(B)ccabba(C)loglogbaacbc(C)loglogabcc(9)执行右面的程序框图,如果输入的x=0,y=1,n=1,则输入x,y的值满足(A)y=2x(B)y=3x(C)y=4x(D)y=5x\(10)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点,已知,42AB,25DE则C的焦点到准线的距离为(A)2(B)4(C)6(D)8(11)平面过正方体ABCD-1111ABCD的顶点A,//平面11CBD,平面ABCD=m,平面11ABBA=n,则m,n所成角的正弦值为(A)32(B)22(C)33(D)13(12)已知函数fx=sinx()(+)0(,2为fx()的零点,4x为fxy()图像的对称轴,且f(x)在(18π,536π)单调,则的最大值为(A)11(B)9(C)7(D)5二、填空题:本题共4小题,每小题5分。(13)设向量a=(m,1),b=(1,2),且222||||||,abab则m=.(14)5(2)xx的展开式中,x3的系数是.(用数字填写答案)(15)设等比数列{na}满足132410,5aaaa,则12aa…na的最大值为.(16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料。生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要用材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元,该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产\品A、产品B的利润之和的最大值为元。三、解答题:解答应写出文字说明、证明过程或演算步骤。(17)(本小题满分12分)ABC的内角A,B,C的对边分别为a,b,c。已知2cos(coscos)CaBBAc.(Ⅰ)求C;(Ⅱ)若c=7,ABC的面积为332,求ABC的周长.(18)(本小题满分12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,AFD=90o,且二面角D-AF-E与二面角C-BE-F都是60o.(Ⅰ)证明:平面ABEF⊥平面EFDC;(Ⅱ)求二面角E-BC-A的余弦值.(19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了,

1 / 41
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功