3.3.3函数的最值与导数极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质。但是我们往往更关心函数在某个区间上哪个值最大,哪个值最小。观察区间[a,b]上函数y=f(x)的图象,你能找出它的极大值点,极小值点吗?oxdbfcaehgy极大值点,ceg极小值点dbf你能说出函数的最大值点和最小值点吗?最大值点:a,最小值点:d函数最值的概念定义:可导函数在闭区间[a,b]上所有点处的函数值中最大(或最小)值,叫做函数的最大(或最小)值。一般地,在闭区间上连续的函数在[a,b]上必有最大值与最小值。()fx()fx举例说明()fxoxyab)(xfy最小值是f(b).单调函数的最大值和最小值容易被找到。函数y=f(x)在区间[a,b]上最大值是f(a),图1ox2xb4x1xa3x)(xfy5xy最大值是f(x3),图2函数y=f(x)在区间[a,b]上最小值是f(x4).函数最值的概念定义:可导函数在闭区间[a,b]上所有点处的函数值中最大(或最小)值,叫做函数的最大(或最小)值。一般地,在闭区间上连续的函数在[a,b]上必有最大值与最小值。()fx()fx若改为(a,b)?举例说明()fx函数在(0,∞)内连续。1()fxx42-2-4-55怎样求函数y=f(x)在区间[a,b]内的最大值和最小值?只要把函数y=f(x)的所有极值连同端点的函数值进行比较即可。例5、求函数f(x)=x3-12x+12在[0,3]上的最大值,最小值。解:由上节课的例1知,在[0,3]上,当x=2时,f(x)=x3-12x+12有极小值,并且极小值为f(2)=-4.又由于f(0)=12,f(3)=3,因此,函数f(x)=x3-12x+12在[0,3]上的最大值为12,最小值为-4。①求函数y=f(x)在(a,b)内的极值(极大值与极小值);②将函数y=f(x)的各极值与f(a)、f(b)(即端点的函数值)作比较,其中最大的一个为最大值,最小的一个为最小值.求函数y=f(x)在[a,b]上的最大值与最小值的步骤如下课本98页练习