高考中的概率统计2014.9录一、选择题1.(2014.河南理科第5题)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率()A.18B.38C.58D.782.(2014.北京理科第8题)有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A同学每科成绩不低于B同学,且至少有一科成绩比B高,则称“A同学比B同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样的。问满足条件的最多有多少学生()A.2B.3C.4D.53.(2014.广东理科第6题)已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A、200,20B、100,20C、200,10D、100,104.(2014.湖南理科第2题)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p、2p、3p,则()A、123pppB、123pppC、132pppD、132ppp5.(2014.山东理科第(7)题)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()(A)1(B)8(C)12(D)186.(2014.陕西理科第9题)设样本数据1210,,,xxx的均值和方差分别为1和4,iiyxa(a为非零常数,1,2,,10i),则12,10,yyy的均值和方差分别为()A.1+,4aB.1,4aaC.1,4D.1,4+a7.(2014.新课标2.理科第5题)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45二、填空题8.(2014.江苏第4题)从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是.9.(2014.江苏第6题)设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.江苏第6题图10.(2014.广东理科第11题)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为。11.(2014.江西理科第12题)10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.12.(2014.上海理科第13题)某游戏的得分为1,2,3,4,5,随机变量表示小白玩该游戏的得分.若()4.2E,则小白得5分的概率至少为.13.(2014.天津理科第(9)题)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.三、解答题14.(2014.河南理科第18题)(本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x和样本方差2s(同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z服从正态分布2(,)N,其中近似为样本平均数x,2近似为样本方差2s.(i)利用该正态分布,求(187.8212.2)PZ;(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:150≈12.2.若Z~2(,)N,则()PZ=0.6826,(22)PZ=0.9544.15.(2014.河南文科第(18)题)(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?16.(2014.江苏第22题)(本小题满分10分)盒中共由9个球,其中由4个红球、3个黄球和2个绿球,这些球除颜色外完全相同。(1)从盒中一次随机取出2个球,求取出的2个求颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123,,xxx,随机变量X表示123,,xxx中的最大数,求X的概率分布和数学期望()EX。17.(2014.安徽理科第(17)题)(本小题满分12分)甲乙恋人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未初相连胜,则判定获胜局数多者赢得比赛。假设每局甲获胜的概率为32,乙获胜的概率为31,各局比赛结果相互独立。(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望)。18.(2014.安徽文科第17题)(本小题满分12分)某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)(Ⅰ)应收集多少位女生样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:22()()()()()nadbcKabcdacbd20()PKk0.100.050.0100.005IIk2.7063.8416.6357.87919.(2014.北京理科第16题)(本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率.(2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一场不超过6.0的概率.(3)记x是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这比赛中的命中次数,比较)(XE与x的大小(只需写出结论)20.(2014.北京文科第18题)(本小题满分13分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)21.(2014.广东理科第17题)(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,nnf和2f的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1学科网人的日加工零件数落在区间(30,50]的概率。22.(2014.湖南理科第17题)(本小题满分l2分)某企事业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立。(Ⅰ)求至少有一种新产品研发成功的概率;(Ⅱ)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望。23.(2014.江西理科第21题)(满分14分)随机将1,2,,2,2nnNn这2n个连续正整数分成A,B两组,每组n个数,A组最小数为1a,最大数为2a;B组最小数为1b,最大数为1b,记2112,aabb(1)当3n时,求的分布列和数学期望;(2)令C表示事件与的取值恰好相等,求事件C发生的概率pc;(3)对(2)中的事件C,c表示C的对立事件,判断pc和pc的大小关系,并说明理由。24.(2014.辽宁理科第18题)(本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望()EX及方差()DX.25.(2014.全国理科第20题)(本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.60.50.50.4、、、,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的数学期望.26.(2014.陕西理科第19题)(本小题满分12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量具有随机性,且互不影响,其具体情况如下表:(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元的概率.27.(2014.四川理科第17题)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200分)。设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立。(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了。请运用概率统计的相关知识分析分数减少的原因。28.(2014.天津理科第(16)题)(本小题满分13分)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的