均值不等式知识点讲解及习题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第三节:基本不等式1、基本不等式:(1)如果a、b是正数,那么(当且仅当a=b时取“=”)(2)对基本不等式的理解:a>0,b>0,a,b的算术平均数是a+b/2,几何平均数是_________.叙述为:两个正数的算术平均数不小于他们的几何平均数2、基本不等式的推广:注意:用基本不等式求最值的要点是:一正、二定、三相等三个正数的均值不等式:n个正数的均值不等式:3、四种均值的关系两个正数a、b的调和平均数、几何平均数、算术平均数、均方根之间的关系是:4.最值定理设x>0,y>0,由x+y≥(1)若积xy=P(定值),则和x+y有最小值;(2)若和x+y=S(定值),则积xy有最大值即:积定和最小,和定积最大.2ababab).(22,R,)4().(2,R,)3().(2R,,)2(),00(,0R,)1(222222等号时取当且仅当则若时取等号当且仅当则若时取等号当且仅当则若取时当且仅当则若bababababaabbababaabbabaaaaa.2211222babaabbaxy2P222S.33abccba.....n....2121nnnaaaaaa(不等式的证明)例1、证明基本不等式(跟踪训练)例2、(跟踪训练)例3、若x>0,y>0,x+y=1.求证:2abab,,:2.baabab已知都是正数求证9)11)(11(yx(跟踪训练)若a、b、c是不全相等的正数,求证:(利用基本不等式求最值)例3、(跟踪训练1)(跟踪训练2)若x、y∈,则x+4y=1,求x.y的最大值R.lglglg2lg2lg2lgcbacabcba例4、若正数a,b满足求a+b的最小值(跟踪训练1)若正实数x,y满足xy=2x+y+6,求xy的最小值。(跟踪训练2)设x、y均为正数,且求xy的最小值。例5、若x,y,z∈,x-2y+3z=0,则的最小值为_________.Rxzy2(跟踪训练)若直线2ax-by+2=0(a>b>0)始终平分圆的周长,则的最小值为_________.例6、已知a、b都是正实数,且满足求4a+b的最小值(跟踪训练)设x,y满足约束条件若目标函数z=ax+by(a0,b0)的最大值为12,求的最小值ba11(利用均值不等式判断不等式的成立)例7、设a>0,b>0,则下列不等式中不成立的是()A.B.C.D.(跟踪训练)下列不等式不一定成立的是()221abba4)11)((bababaabba22abbaab2

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功