初二数学下学期期末考试题姓名:分数:(本卷共四个大题满分150分考试时间120分钟)一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.新课标第一网1、在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2、在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A´,则点A与点A´的关系是()A、关于x轴对称B、关于y轴对称C、关于原点对称D、将点A向x轴负方向平移一个单位得点A´3、下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形;B.两条对角线相等的四边形是矩形;C.两条对角线互相垂直的矩形是正方形;D.两条对角线相等的菱形是正方形4、刘翔为了迎战2008年北京奥运会刻苦进行110米拦训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的()A.平均数B.中位数C.众数D.方差5、点P(3,2)关于x轴的对称点'P的坐标是()A.(3,-2)B.(-3,2)C.(-3,-2)D.(3,2)6、以三角形的三个顶点及三边中点为顶点的平行四边形共有:()(A)1个(B)2个(C)3个(D)4个7、如图,已知P、Q是ABC的BC边上的两点,且BPPQQCAPAQ,则BAC的大小为()A.120B.110C.100D.908、如图,在□ABCD的面积是12,点E,F在AC上,且AE=EF=FC,则△BEF的面积为()A.6B.4C.3D.29、如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数2kyx的图象上,若点A的坐标为(-2,-2),则k的值为()A.4B.-4C.8D.—810、如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,CQPBAEFDCBADF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②GDHGHD;③CDGDHGESS四边形;④图中有8个等腰三角形。其中正确的是()A、①③B、②④C、①④D、②③二、填空题:(本大题10个小题,每小题3分,共30分)在每小题中,请将答案直接填在题后的横线上11、若分式2242xxx的值为零,则x的值是.12、已知1纳米9110米,一个纳米粒子的直径是35纳米,这一直径可用科学计数法表示为米.13、如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,AD与BC相交于点E,那么图中全等的三角形共有对.14、如图,ACBDFEBCEF∠∠,,要使ABCDEF△≌△,则需要补充一个条件,这个条件可以是.15、已知y与3x成正比例,当4x时,1y;那么当4x时,y。16、已知样本x,99,100,101,y的平均数为100,方差是2,则x=,y=.17、如图,已知函数yaxb和ykx的图象交于点P,则二元一次方程组,yaxbykx的解是.18、如图,将直角三角板EFG的直角顶点E放置在平行四边形ABCD内,顶点F、G分别在AD、BC上,若10AFE,则EGB=________.新课标第一网19、在数学活动课上,小明做了一个梯形纸板,测得一底边长为7cm,高为12cm,两腰长分别为15cm和20cm,则该梯形纸板的另一底边长为。ABCDEF20、如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQBP,PQ交CD与Q,若22AP,CQ=5,则正方形ABCD的面积为________三、解答题(本大题6个小题,每小题10分,共60分)解答时每小题必须给出必要的演算过程或推理步骤.21、(10分)⑴计算:2012(2)(32)16.⑵解方程16352xxxxx、(10分)⑴数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(写出已知、求作,作图不写作法,但要求保留作图痕迹.)⑵如图,O为平行四边形ABCD的对角线AC的中点,过点O作一条直线分别与AB、CD交于点M、N,点E、F在直线MN上,且OE=OF。(1)、图中共有几对全等三角形,请把它们都写出;(2)、求证:∠MAE=∠NCF。BAbaABCDOEFMN、(10分)化简并求值:22121111xxxxx,其中0x。24、(10分)物理兴趣小组20位同学在实验操作中的得分情况如下表:得分(分)10987人数(人)5843问:①求这20位同学实验操作得分的众数、中位数.②这20位同学实验操作得分的平均分是多少?③将此次操作得分按人数制成如图所示的扇形统计图.扇形①的圆心角度数是多少?25、(10分)已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.(1)求证:AE=AF.(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.20%①25%40%26、(10分)元旦前夕,我市为美化市容,开展城市绿化活动,要种植一种新品种树苗.甲、乙两处育苗基地均以每株4元的价格出售这种树苗,并对一次性购买该种树苗不低于1000株的用户均实行优惠:甲处的优惠政策是每株树苗按原价的7.5折出售;乙处的优惠政策是免收所购树苗中200株的费用,其余树苗按原价的9折出售.(1)规定购买该种树苗只能在甲、乙两处中的一处购买,设一次性购买x(x≥1000且x为整数)株该种树苗,若在甲处育苗基地购买,所花的费用为y1元,写出y1与x之间的函数关系式,若在乙处育苗基地购买,所花的费用为y2元,写出y2与x之间的函数关系式(两个关系式均不要求写出自变量x的取值范围);(2)若在甲、乙两处分别一次性购买1400株该种树苗,在哪一处购买所花的费用少?为什么?(3)若在甲育苗基地以相应的优惠方式购买一批该种树苗,又在乙育苗基地以相应的优惠方式购买另一批该种树,两批树苗共2500株,购买2500株该树苗所花的费用至少需要多少元?这时应在甲、乙两处分别购买该种树苗多少株?新|课|标|第|一|网四、解答题(本大题2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤。27、(10分)如图正方形ABCD中,E为AD边上的中点,过A作AF⊥BE,交CD边于F,M是AD边上一点,且有BM=DM+CD.⑴求证:点F是CD边的中点;⑵求证:∠MBC=2∠ABE.MFECDBA28、(10分)如图,帆船和帆船在太湖湖面上训练,为湖面上的一个定点,教练船静候于点.训练时要求两船始终关于点对称.以为原点,建立如图所示的坐标系,轴,轴的正方向分别表示正东、正北方向.设两船可近似看成在双曲线上运动.湖面风平浪静,双帆远影优美.训练中当教练船与两船恰好在直线上时,三船同时发现湖面上有一遇险的船,此时教练船测得船在东南方向上,船测得与的夹角为,船也同时测得船的位置(假设船位置不再改变,三船可分别用三点表示).XkB1.com(1)发现船时,三船所在位置的坐标分别为和;(2)发现船,三船立即停止训练,并分别从三点出发船沿最短路线同时..前往救援,设两船的速度相等,教练船与船的速度之比为,问教练船是否最先赶到?请说明理由.参考答案一、选择题1.C2.B3.B4.D5.A6.C7.A8.D9.D10.D二、填空题11、2x12、83.51013、414、答案不唯一。15、716、98,10217、4,2xy18、8019、32cm或14c20、81三、解答题21、⑴1⑵x=1,经过检验后是增根,原方程无解22、⑴已知:相交直线a、b,点A、点B.XkB1.com求作:点P,使点P到直线a、b的距离相等,且PA=PB.⑵(1)共有4对:ΔABC≌ΔCDA;ΔAMO≌ΔCNO;ΔAEO≌ΔCFO;ΔAEM≌ΔCFN;(2)通过证明ΔAOE≌ΔCOF可得∠EAO=∠FCO;由∠MAO=∠OCN,可推出∠MAE=∠NCF。23、解:22121111xxxxx222(1)21(1)(1)11xxxxxx2221(1)1xxx21x当0x时,原式=1.24、解:(1)1、众数为9,中位数为9(2)平均分=51089483720=8.75分⑶圆心角的度数=(1-25%-40%-20%)×360°=54°25、证明:(1)∵四边形ABCD是菱形,∴AB=AD,,∵BE=DF∴≌∴AE=AF(2)连接AC∵AB=BC,∴是等边三角形,E是BC的中点∴AE⊥BC,∴,同理∵∴又∵AE=AF∴是等边三角形。26、(1)y1=0.75×4x=3x,y2=0.9×4(x-200)=3.6x-720;(2)在甲处育苗基地购买种树苗所花的费用少.当x=1400时,y1=3x=4200,y2=3.6x-720=4320.因为y1<y2,所以在甲处购买;(3)设在乙处购买a株该种树苗,所花钱数为W元,W=3(2500-a)+3.6a-720=0.6a+6780.因为10002500,100025002500,aa所以1000≤a≤1500,且a为整数.因为0.6>0,所以W随a的增大而增大.所以a=1000时,W最小=7380.在甲处购买的树苗=2500-1000=1500.答:至少需要花费7380元,应在甲处购买该种树苗1500株,在乙处购买该种树苗1000株.四、解答题27.证明:⑴∵正方形ABCD中AD=AB,∠ADC=∠BAD=90°∴∠1+∠2=90°∵AF⊥BE∴∠3+∠2=90°∴∠1=∠3在△ADF和△BAE中BADADCBAAD31∴△ADF≌△BAE∴DF=AE∵AE=DE=21ADAD=AB∴DF=CF=21AB∴点F是CD边的中点⑵连结BF,并延长交AD的延长线于点N∵正方形ABCD中AD∥BC∴∠4=∠N在△NDF和△BCF中CFDFN764∴△NDF≌△BCF∴DN=CB∵正方形ABCD中AD=BC=CD∴DN=CD∵BM=DM+CD∴BM=DM+DN=MN∴∠5=∠N=∠4即∠MBC=2∠4在△ADF和△BCF中CFDFCADCBCAD∴△ADF≌△BCF∴∠1=∠4∵∠1=∠3∴∠1=∠4∴∠MBC=2∠3=2∠ABE(注:只要方法正确按同等情况给分)28、(1);;.(2)作轴于,连和.∵A的坐标为,,.∵C在的东南方向上,.∵AO=BO,.又∵∠BAC=60°为正三角形...622423OC由条件设:教练船的速度为,两船的速度均为4.则教练船所用的时间为:,两船所用的时间均为:.∵mm324362,,.教练船没有最先赶到.新课标第一网