Nonparametric estimation for dependent data with a

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Nonparametricestimationfordependentdatawithanapplicationtopaneltimeseries1JanJohannes2SuhasiniSubbaRao3February5,2008AbstractInthispaperweconsidernonparametricestimationfordependentdata,wheretheobservationsdonotnecessarilycomefromalinearprocess.Westudydensityestimationandalsodiscussassociatedproblemsinnonparametricregressionusingthe2-mixingdependencemeasure.Wecomparetheresultsunder2-mixingwiththosederivedundertheassumptionthattheprocessislinear.Inthecontextofpaneltimeserieswhereoneobservesdatafromseveralindividuals,itisoftentoostrongtoassumethejointlinearityofprocesses.Insteadthemethodsdevelopedinthispaperenableustoquantifythedependencethrough2-mixingwhichallowsfornonlinearity.Weproposeanestimatorofthepanelmeanfunctionandobtainitsrateofconvergence.Weshowthatundercertainconditionstherateofconvergencecanbeimprovedbyallowingthenumberofindividualsinthepaneltoincreasewithtime.Keywords:Densityestimation,nonparametricregression,2-mixing,nonlinearprocesses,paneltimeseries.AMS2000subjectclassi cations:Primary:62G05,62M10;Secondary:62G07,62G08.1IntroductionNonparametricestimationfordependentobservationshasalonghistoryinstatistics.Rosen-blatt[1970] rststudieddensityestimationfordependentdata.Sincethenseveralauthorshaveconsiderednonparametricestimationundervariousassumptions.Forexample,HallandHart[1990a],Giraitisetal.[1996],Mielniczuk[1997]andEstevasandVieu[2003]considerdensityestimationforlinearprocesseswhichhavelongmemory,whereasCheng1ThisworkwaspartiallysupportedbytheDFG(DA187/12-3).2UniversityHeidelberg,InstituteofAppliedMathematics,ImNeuenheimerFeld,294,D-69120Heidel-berg,Germany,johannes@statlab.uni-heidelberg.de3TexasA&MUniversity,DepartmentofStatistics,CollegeStation,Texas77843-3143,U.S.A.suhasini.subbarao@stat.tamu.edu1arXiv:0706.3923v1[math.ST]27Jun2007andRobinson[1991]considerdensityestimationforrandomvariableswhicharenonlinearfunctionsofalinearprocess.Anotableresult,isthattheyshowiftheobservationswerefromalinearprocessandhaveshortmemory,thentheusualrateofconvergence,knownforindependentobservations,alsoholdsfordependentobservations.Ontheotherhand,forlongmemoryprocesses,therateofconvergenceisdi erent.Interestingly,despitelongmemoryinuencingtherateofconvergence,thereisnoinuenceoflongmemoryonthebandwidthchoice,whichissameregardlessofshortorlongmemory.Inotherwords,iftheobservationscomefromalinearprocess,alargerbandwidthdoesnotimprovetherateofconvergenceofthedensityestimator.Similarresultscanalsobederivedfornonparametricregressionproblems(c.f.HallandHart[1990b],ChengandRobinson[1994]andCsorgoandMielniczuk[1995,1999,2001]).However,usuallyitisassumedthattheobservationscomefromalinearprocessorarefunctionsofalinearprocess.Inthecaseoflinearity,thejointdensityoftheobservationscanbecharacterised(insomesense)intermsoftheautocovariances.Itisthisrepresentationthatallowsforthemeansquarederrorofthenonparametricestimatortobederivedintermsoftheautocovariancefunction.Howeverthisresultdoesnotnecessarilyholdwhentheprocessisnonlinear.Theassumptionoflinearitycanberelaxedbyusingthenotionof2-mixing(seeBosq[1998]),andinthispaperweobtainratesofconvergenceforprocesseswhichare2-mixing.Unliketheautocovariancefunction,2-mixingcanbeconsideredasameasureofdependencebetweentworandomvariables(seeDe nition3.1,below)andthe2-mixingsizequanti esthisdependence:alargemixingsizeindicateslittledependence,whereasasmallmixingsizeindicateslargedependence.The2-mixingsizecanbeestablishedforseveraltypesofpro-cesses,forexample,linearprocesses,seeAthreyaandPantula[1986],ClineandPu[1999],Chanda[1974]andtheAppendixA.4(notingthatstrongmixingimplies2-mixing,thoughtheconverseisnotnecessarilytrue)andnonlinearprocesses,seeMasryandTjstheim[1995],Bousamma[1998]andBasraketal.[2002].Assumingthatthe2-mixingsizeissucientlylarge,Bosq[1998]obtainstherateofconvergenceofseveralnonparametricesti-mators.Howeverdespite,therebeingextensiveliteratureonnonparametricestimationforlinearprocessesandsomeonnonparametricestimationforprocesseswhichare2-mixingwithasucientlylarge2-mixingsize,asfarasweareawareverylittleexistsonnonpara-metricestimationfornonlinearprocesseswhose2-mixingsizeisnotsucientlylarge(forexampletheARCH(1)process,whichisanonlinearprocessandcanhaveasmallmix-ingsize).Inthispaperweaddressthisissue,andconsidernonparametricestimationfordependentdataandformulatetheresultsintermsofthe2-mixingsize.Westudybothdensityestimationandalsononparametricregressionproblems.Anaturalapplicationofthemethodologyproposedinthispaperistopaneltimeseries,whereoneobservesseveralindividualsovertimeandassociatedwitheachindividualareregressorswhichareknowntoinuencetheindividual.Wenotethateveninthecasethatanindividualcomesfromalineartimeseries,thereisnoguaranteethatthedependencebetweenindividualsisalsolinear.Thereforewequantifythedependenceintermsofthe2-mixingsizewithinand2betweenindividualsovertime,andconsidernonparametricestimationforpaneltimeserieswithinthisframework.InSection3weconsiderkerneldensityestimation,inparticularweobtainthesamplingpropertiesoftheRosenblatt-Parzenkernelestimatorandobt

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功