1.1探索勾股定理(2)——数形结合之美•1、经历探索、验证勾股定理的过程,了解勾股定理的各种探究方法,进一步发展空间观念和推理能力;•2、掌握勾股定理,并能运用勾股定理解决一些实际问题。学习目标勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。走进数学史请同学们画四个与右图全等的直角三角形,并把它剪下来。abc用这四个三角形拼一拼、摆一摆,看看是否可以得到一个正方形,你能利用它说明勾股定理吗?并与同伴交流。cabcabcabcab∵c2=4•ab+(b-a)2=2ab+b2-2ab+a2=a2+b2∴a2+b2=c2大正方形的面积可以表示为;也可以表示为c24•ab/2+(b-a)212cabcabcabcab∵(a+b)2=c2+4•ab/2a2+2ab+b2=c2+2ab∴a2+b2=c2大正方形的面积可以表示为;也可以表示为(a+b)2c2+4•ab/2美国第二十任总统伽菲尔德总统巧证勾股定理aabbccADCBE返回勾股定理的证明方法证法一证法二证法三(邹元治证明)(赵爽证明)赵爽:我国古代数学家走进数学史勾股定理的证明方法证法四证法五证法六(加菲尔德证明)加菲尔德:第二十任总统(梅文鼎证明)梅文鼎:清代天文、数学家(项明达证明)项明达:清代数学家走进数学史在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景……他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形……勾股定理的于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。1876年4月1日,他在《新英格兰教育日志》上发表了他对勾股定理的这一证法。1881年,这位中年人—伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。勾股定理的证明现在在网络上看到较多的是16种,包括前面的6种,还有:欧几里得证明利用相似三角形性质证明、杨作玫证明、李锐证明、利用切割线定理证明、利用多列米定理证明、作直角三角形的内切圆证明、利用反证法证明、辛卜松证明、陈杰证明。走进数学史美国总统证法:bcabcaABCD例1飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩5000米,飞机每小时飞行多少千米?40004000CBADABC比比谁算得快蚂蚁沿图中的折线从A点爬到D点,一共爬了多少厘米?(小方格的边长为1厘米)GFE1、下列阴影部分是一个正方形,求此正方形的面积15厘米17厘米解:设正方形的边长为x厘米,则x2=172-152x2=64答:正方形的面积是64平方厘米。练一练补充练习:1、放学以后,小红和小颖从学校分手,分别沿着东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖用20分钟到家,小红和小颖家的距离为()A、600米;B、800米;C、1000米;D、不能确定2、直角三角形两直角边分别为5厘米、12厘米,那么斜边上的高是()A、6厘米;B、8厘米;C、80/13厘米;D、60/13厘米;CD课堂练习:一、判断题.1.ABC的两边AB=5,AC=12,则BC=13()2.ABC的a=6,b=8,则c=10()二填空题1.在ABC中,C=90°,(1)若c=10,a:b=3:4,则a=____,b=___.(2)若a=9,b=40,则c=______.2.在ABC中,C=90°,若AC=6,CB=8,则ABC面积为_____,斜边为上的高为______.6841244.8小结1、本节课学习了直角三角形的哪些知识?2、通过这节课的学习,你在解题思路和方法上有什么收获?1.一轮船以16海里/小时的速度离A港向东北方向航行,另一艘轮船同时以12海里/小时的速度离A港向西北方向航行,2小时后,两船相距多少海里?2、等腰三角形底边上的高为8,周长为32,求这个三角形的面积8XDABC解:设这个三角形为ABC,高为AD,设BD为X,则AB为(16-X),由勾股定理得:X2+82=(16-X)2即X2+64=256-32X+X2∴X=6∴S∆ABC=BC•AD/2=2•6•8/2=483.如图在△ABC中,∠ACB=90º,CD⊥AB,D为垂足,AC=2.1cm,BC=2.8cm.求①△ABC的面积;②斜边AB的长;③斜边AB上的高CD的长。DABC