南昌大学现代控制理论实验报告

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

现代控制理论实验报告课程名称:姓名:学号:专业班级:2016年6月目录实验一系统能控性与能观性分析…………………….1实验二典型非线性环节……………………………….3实验三二阶非线性控制系统的相平面分析法………10实验四线性系统的状态反馈及极点配置……………20实验五控制系统极点的任意配置……………………24实验六具有内部模型的状态反馈控制系统…………31实验七状态观测器的设计及应用……………………35第1页共37页实验一系统的能控性与能观性分析一、实验设备计算机,MATLAB软件。二、实验目的①学习系统状态能控性、能观测性的定义及判别方法;②通过用MATLAB编程、上机调试,掌握系统能控性、能观测性的判别方法,掌握将一般形式的状态空间描述变换成能控标准形、能观标准形。三、实验原理说明参考教材利用MATLAB判定系统能控性,利用MATLAB判定系统能观测性。四、实验步骤①根据系统的系数阵A和输入阵B,依据能控性判别式,对所给系统采用MATLAB编程;在MATLAB界面下调试程序,并检查是否运行正确。②根据系统的系数阵A和输出阵C,依据能观性判别式,对所给系统采用MATLAB编程;在MATLAB界面下调试程序,并检查是否运行正确。③构造变换阵,将一般形式的状态空间描述变换成能控标准形、能观标准形。五.实验例题验证1、已知系数阵A和输入阵B分别如下,判断系统的状态能控性与能观性,,第2页共37页2.已知系统状态空间描述如下(1)判断系统的状态能控性;(2)判断系统的状态能观测性;(3)构造变换阵,将其变换成能控标准形;(4)构造变换阵,将其变换成能观测标准形;六、实验心得本实验运用MATLAB进行系统能控性与能观性分析,很直观的看到了结果,加深了自己对能控能观的理解,实验过程很顺利,第一个实验还是比较简单的。第3页共37页实验二典型非线性环节一.实验要求1.了解和掌握典型非线性环节的原理。2.用相平面法观察和分析典型非线性环节的输出特性。二.实验原理及说明实验以运算放大器为基本元件,在输入端和反馈网络中设置相应元件(稳压管、二极管、电阻和电容)组成各种典型非线性的模拟电路,模拟电路见图3-4-5~图3-4-8所示。1.继电特性理想继电特性的特点是:当输入信号大于0时,输出U0=+M,输入信号小于0,输出U0=-M。理想继电特性如图3-4-1所示,模拟电路见图3-4-5,图3-4-1中M值等于双向稳压管的稳压值。图3-4-1理想继电特性图3-4-2理想饱和特性注:由于流过双向稳压管的电流太小(4mA),因此实际M值只有3.7V。2.饱和特性饱和特性的特点是:当输入信号较小时,即小于|a|时,电路将工作于线性区,其输出U0=KUi,如输入信号超过|a|时,电路将工作于饱和区,即非线性区,U0=M。理想饱和特性见图3-4-2所示,模拟电路见图3-4-6,图3-4-2中M值等于双向稳压管的稳压值,斜率K等于前一级反馈电阻值与输入电阻值之比,即:K=Rf/Ro。a为线性宽度。3.死区特性死区特性特点是:在死区内虽有输入信号,但其输出U0=0,当输入信号大于或小于|△|时,则电路工作于线性区,其输出U0=KUi。死区特性如图3-4-3所示,模拟电路见图3-4-7,图3-4-3中斜率K为:0RRKf死区)(4.0)(123022VRVR式中R2的单位KΩ,且R2=R1。(实际△还应考虑二极管的压降值)图3-4-3死区特性图3-4-4间隙特性4.间隙特性间隙特性的特点是:输入信号从-Ui变化到+Ui,与从+Ui变化到-Ui时,输出的变化轨迹是不重叠的,其表现在X轴上是△,△即为间隙。当输入信号│Ui│≤间隙△时,输出为零。当输入信号│Ui│>△,输出随输入按特性斜率线性变化;当输入反向时,其输出则保持在方向发生变化时的输出值上,直到输入反向变第4页共37页化2△,输出才按特性斜率线性变化。间隙特性如图3-4-4所示,模拟电路见图3-4-8,图3-4-4图中空回的宽度△(OA)为:式中R2的单位为KΩ,(R2=R1)。)V(R42.0)V(1205R22特性斜率tgα为:0RRCCtgffi改变R2和R1可改变空回特性的宽度;改变0RRi或)(fiCC值可调节特性斜率(tgα)。三.实验步骤及内容在实验中欲观测实验结果时,可用普通示波器,也可选用本实验机配套的虚拟示波器。如果选用虚拟示波器,只要运行LABACT程序,选择自动控制菜单下的非线性系统的相平面分析下的典型非线性环节实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)的CH1、CH2测量波形。1).测量继电特性实验步骤:CH1、CH2选‘X1’档!(1)将信号发生器(B1)的幅度控制电位器中心Y测孔,作为系统的-5V~+5V输入信号(Ui):B1单元中的电位器左边K3开关拨上(-5V),右边K4开关也拨上(+5V)。(2)模拟电路产生的继电特性:继电特性模拟电路见图3-4-5。图3-4-5继电特性模拟电路①构造模拟电路:按图3-4-5安置短路套及测孔联线,表如下。(a)安置短路套(b)测孔联线模块号跨接座号1A3S1,S122A6S2,S6②观察模拟电路产生的继电特性:观察时要用虚拟示波器中的X-Y选项慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~Ui图形。1信号输入B1(Y)→A3(H1)2运放级联A3(OUT)→A6(H1)3示波器联接A6(OUT)→CH1(送Y轴显示)4A3(H1)→CH2(送X轴显示)第5页共37页(3)函数发生器产生的继电特性①函数发生器的波形选择为‘继电’,调节“设定电位器1”,使数码管右显示继电限幅值为3.7V。②测孔联线:信号发生器(B1)函数发生器(B5)示波器输入端(B3)幅度控制电位器(Y)B5(非线性输入)CH2(送X轴显示)B5(非线性输出)CH1(送Y轴显示)③观察函数发生器产生的继电特性:观察时要用虚拟示波器中的X-Y选项慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~Ui图形。2).测量饱和特性实验步骤:CH1、CH2选‘X1’档!(1)将信号发生器(B1)的幅度控制电位器中心Y测孔,作为系统的-5V~+5V输入信号(Ui):B1单元中的电位器左边K3开关拨上(-5V),右边K4开关也拨上(+5V)。第6页共37页(2)模拟电路产生的饱和特性:饱和特性模拟电路见图3-4-6。图3-4-6饱和特性模拟电路①构造模拟电路:按图3-4-6安置短路套及测孔联线,表如下。(a)安置短路套(b)测孔联线②观察模拟电路产生的饱和特性:观察时要用虚拟示波器中的X-Y选项慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~Ui图形。(3)函数发生器产生的饱和特性①函数发生器的波形选择为‘饱和’特性;调节“设定电位器1”,使数码管左显示斜率为2;调节“设定电位器2”,使数码管右显示限幅值为3.7V。②测孔联线:信号发生器(B1)函数发生器(B5)示波器输入端(B3)幅度控制电位器(Y)B5(非线性输入)CH2(送X轴显示)B5(非线性输出)CH1(送Y轴显示)1信号输入B1(Y)→A3(H1)2运放级联A3(OUT)→A6(H1)3示波器联接A6(OUT)→CH1(送Y轴显示)4A3(H1)→CH2(送X轴显示)模块号跨接座号1A3S1,S7,S122A6S2,S6第7页共37页③观察函数发生器产生的饱和特性:观察时要用虚拟示波器中的X-Y选项慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~Ui图形。3).测量死区特性实验步骤:CH1、CH2选‘X1’档!(1)将信号发生器(B1)的幅度控制电位器中心Y测孔,作为系统的-5V~+5V输入信号(Ui):B1单元中的电位器左边K3开关拨上(-5V),右边K4开关也拨上(+5V)。(2)模拟电路产生的死区特性死区特性模拟电路见图3-4-7。图3-4-7死区特性模拟电路①构造模拟电路:按图3-4-7安置短路套及测孔联线,表如下。(a)安置短路套(b)测孔联线②观察模拟电路产生的死区特性:观察时要用虚拟示波器中的X-Y选项模块号跨接座号1A3S4,S82A6S2,S61信号输入B1(Y)→B1(IN)死区特性输出B1(OUT)→A3(H1)2运放级联A3(OUT)→A6(H1)3示波器联接A6(OUT)→CH1(送Y轴显示)4B1(IN)→CH2(送X轴显示)第8页共37页慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~Ui图形。(3)函数发生器产生的死区特性①函数发生器的波形选择为‘死区’特性;调节“设定电位器1”,使数码管左显示斜率为1;调节“设定电位器2”,使数码管右显示死区寬度值为2.4V。②测孔联线:信号发生器(B1)函数发生器(B5)示波器输入端(B3)幅度控制电位器(Y)B5(非线性输入)CH2(送X轴显示)B5(非线性输出)CH1(送Y轴显示)③观察函数发生器产生的死区特性:观察时要用虚拟示波器中的X-Y选项慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~Ui图形。4).测量间隙特性实验步骤:CH1、CH2选‘X1’档!第9页共37页(1)用信号发生器(B1)的‘幅度控制电位器’和‘非线性输出’构造输入信号(Ui):B1单元中的电位器左边K3开关拨上(-5V),右边K4开关也拨上(+5V)。(2)模拟电路产生的间隙特性间隙特性的模拟电路见图3-4-8。图3-4-8间隙特性的模拟电路①构造模拟电路:按图3-4-8安置短路套及测孔联线,表如下。(a)安置短路套(b)测孔联线②观察模拟电路产生的间隙特性:观察时要用虚拟示波器中的X-Y选项慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~Ui图形。★注意:在做间隙特性实验时应将Ci和Cf分别放电,即用按住锁零按钮3秒,否则将会导致波形的中心位置不在原点。(3)函数发生器产生的间隙特性①函数发生器的波形选择为‘间隙’特性;调节“设定电位器1”,使数码管左显示斜率为1;调节“设定模块号跨接座号1A1S5,S102A6S2,S61信号输入B1(Y)→B1(IN)死区特性输出B1(OUT)→A1(H1)2运放级联A1(OUT)→A6(H1)3示波器联接A6(OUT)→CH1(送Y轴显示)4B1(IN)→CH2(送X轴显示)第10页共37页电位器2”,使数码管显示间隙寬度幅值为2.4V。②测孔联线:信号发生器(B1)函数发生器(B5)示波器输入端(B3)幅度控制电位器(Y)非线性输入(IN)CH2(送X轴显示)非线性输出(OUT)CH1(送Y轴显示)③观察函数发生器产生的间隙特性:观察时要用虚拟示波器中的X-Y选项慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~Ui图形。四.实验小结总体来说实验图像与理论相符,只是继电器特性的图像与理论有差距,通过图像更加直观的看到了非线性的特点,加深了印象。实验三二阶非线性控制系统的相平面分析法一.实验要求1.了解非线性控制系统的基本概念。2.掌握用相平面图分析非线性控制系统。3.观察和分析三种二阶非线性控制系统的相平面图。二.实验原理及说明1.非线性控制系统的基本概念在实际控制系统中,几乎都不可避免的带有某种程度的非线性,在系统中只要有一个非线性环节(详见第3.4.1节〈典型非线性环节〉),就称为非线性控制系统。在实际控制系统中,除了存在着不可避免的非线性因素外,有时为了改善系统的性能或简化系统的结构,还要人为的在系统中插入非线性部件,构成非线性系统。例如采用继电器控制执行电机,使电机始终工作于最大电压下,充分发挥其调节能力,

1 / 39
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功