一次函数(1)2齐河鼎新中学14.2一次函数31、通过丰富的实例感悟理解一次函数的定义及其和正比例函数的关系。2、体会将实际问题转化为数学问题的转化思想目标导航14.2.1一次函数(1)问题:某登山队大本营所在地的气温为5℃.海拔每升高1km气温下降6℃,登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃.试用解析式表示y与x的关系.解:y与x的函数关系式为y=-6x+5下列问题中变量间的对应关系可用怎样的函数表示?这些函数有什么共同点?(1)有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差;(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值;(3)某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分的计时费按0.01元/分收取;(4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化。解:C=7t-35解:G=h-105解:y=0.01x+22解:y=-5x+50可以得出上面问题中的函数解析式分别为:(1)c=7t-35(2)G=h-105(3)y=0.01x+22(4)y=-5x+50上面这些函数的形式都是自变量x的k(常数)倍与一个常数的和.一次函数定义一般地,形如y=kx+b(k,b为常数,k≠0)的函数,叫做一次函数当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.例1:下列函数关系式中,哪些是一次函数,哪些是正比例函数?(1)y=-x-4它是一次函数,不是正比例函数。(2)y=5x2+6它不是一次函数,也不是正比例函数。(3)y=2πx它是一次函数,也是正比例函数。它不是一次函数,也不是正比例函数(5)y=-8x它是一次函数,也是正比例函数。xy8(4)xy11.已知下列函数:y=2x+1;xxy21;s=60t;y=100-25x,其中表示一次函数的有()(A)1个(B)2个(C)3个(D)4个D2.要使y=(m-2)xn-1+n是关于x的一次函数,n,m应满足,.n=2m≠23.下列说法不正确的是()(A)一次函数不一定是正比例函数(B)不是一次函数就一定不是正比例函数(C)正比例函数是特定的一次函数(D)不是正比例函数就不是一次函数D4.若函数y=(m-1)x|m|+m是关于x的一次函数,试求m的值.1.已知函数y=(2-m)x+2m-3.求当m为何值时,(1)此函数为正比例函数(2)此函数为一次函数解:(1)由题意,得2m-3=0,m=,所以当m=时,函数为正比例函数y=x232323(2)由题意得2-m≠0,m≠2,所以m≠2时,此函数为一次函数2.一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米。(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度.解:(1)由已知得,函数关系式为v=2t是一次函数,(2)当t=2.5秒时,v=5米/秒3.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱的油量y(单位:升)随行使时间x(单位:时)变化的函数关系式,并写出自变量x的取值范围.y是x的一次函数吗?解:由题意得,函数关系式为y=50-5t.自变量x的取值范围是0≤t≤10y是x的一次函数.1.一次函数的定义2.正比例函数是特殊的一次函数3.对于日常生活中的实际问题,解题的关键是把问题转化成数学问题,即构建相应的数学模型,建立函数关系式,通过题中条件做出答案.1.气温随着高度的增加而下降,下降的一般规律是从地面到高空11km处,每升高1km,气温下降6℃.高于11km时,气温几乎不再变化,设地面的气温为38℃,高空中xkm的气温为y℃.(1)当0≤x≤11时,求y与x之间的关系式?(2)求当x=2、5、8、11时,y的值。(3)求在离地面13km的高空处、气温是多少度?(4)当气温是一16℃时,问在离地面多高的地方?拓展提高练习•解:(1)y与x之间的关系式为y=380-60x•(2)当x=2、5、8、11时y的值分别是260、80、-100、-280.•(3)在离地面13km的高空处、气温是-280.•(4)当y=一16℃时,-160=380-60x,解得x=9(km)2小明根据某个一次函数关系式填写了下表:x-2-101y310其中有一格不慎被墨汁遮住了,想想看,该空格里原来填的数是多少?解释你的理由。