Finite-time blow-up of solutions of an aggregation

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Finite-timeblow-upofsolutionsofanaggregationequationinRnAndreaL.Bertozzia;bandThomasLaurentbaDepartmentofMathematics,UniversityofCalifornia,LosAngeles90095bDepartmentofMathematics,DukeUniversity,Durham,NC27708bertozzi@math.ucla.edu,thomas@math.duke.eduAugust2,2006AbstractWeconsidertheaggregationequationut+r(urKu)=0inRn,n2,whereKisarotationallysymmetric,nonnegativedecayingkernelwithaLipschitzpointattheorigin,e.g.K(x)=ejxj.Weprove nite-timeblow-upofsolutionsfromspeci csmoothinitialdata,forwhichtheproblemisknowntohaveshorttimeexistenceofsmoothsolutions.1IntroductionTheaggregationequationut+r(urKu)=0(1)arisesinanumberofcontextofrecentinterestinthephysicsandbiologyliterature.Inbiology,aswarmingmechanism,inwhichindividualorganismssenseothersatadistance,andmovetowardsregionsinwhichtheysensethepresenceofothers,in-volvesacomplexneurologicalprocessattheindividuallevel.Theselocalindividualinteractionsleadtolargescalepatternsinnatureforwhichitisdesirabletohaveatractablemathematicalmodel.Themodelalsoarisesinthecontextofself-assemblyofnanoparticles(seee.g.HolmandPutkaradze[15,16]andreferencestherein).Theequation(1)withdi erentclassesofpotentialsandwithadditionalregularizingtermsappearsinanumberofrecentandolderpapers.TopazandBertozzi[27]derivethemodelasmulti-dimensionalgeneralizationofone-dimensionalaggregationbehaviordiscussedinthebiologyliterature[13,23].BodnarandVelazquez[2]considerwell-posednessonRfordi erenttypesofkernels.Burgerandcollaborators[5,4]considerwell-posednessofthemodelwithanadditional`porousmedia'typesmoothingterm.Thisclassofmodels,withdi usion,isalsoderivedbyTopazetal[28]whocitesomeearlierrigorousworkfromthe1980sinonespacedimension.Wespeci callyconsider1thecasewherethekernelKhasaLipschitzpointattheorigin,asinthecaseofejxjwhicharisesinboththebiologicalandnanoscienceapplications.Asamathematicsproblem,equation(1)isanactivescalarproblem[10]inwhichaquantityistransportedbyavector eldobtainedbyanonlocaloperatorappliedtothescalar eld.Suchproblemscommonlyariseinuiddynamics,forexample,thetwodimensionalvorticityequation@!@t+vr!=0;v=r?Ne!whereNeistheNewtonianpotentialintwospacedimensions.Theseactivescalarequationssometimesserveasmodelproblemsforthestudyof nitetimeblowupofsolutionsofthe3DEulerequationsinwhichthevorticityvectorsatis es@~!@t+~vr~!=!rv;~v=~K3!(2)whereK3isthe3DBiot-Savartkernel,homogeneousofdegree2in3D.Stretchingofvorticityisaccomplishedbytherighthandsideofof(2)inwhichthenonlocalampli cationofvorticityoccurs.Forthisproblem, nitetimeblowupofsolutionsisanopenproblem.The2D-quasi-geostrophicequationsalsoposeaninterestingfamilyofactivescalarequations[9,17].Animportantdistinction,betweenourproblemandthatoftheEuler-relatedproblems,isthatourtransport eld~visagradientowwhereasthe~vinuiddynamicsisdivergencefree.Neverthelessitisinterestingtonotethisanalogywhichalsoincludesthewell-knownonedimensionalmodelproblemstudiedbyConstantin,Lax,andMajda[8]ut=H(u)uwhereHdenotestheHilberttransform.Thereisnotransportinthisproblemandtheequationisknowntohavesolutionsthatblowupin nitetime.Bydi erentiation,ourproblemcanbewrittenas@u@t+~vru=(Ku)u;(3)anadvection-reactionequationinwhichthesolutionuisampli edbythenonlocaloperator(Ku).AsintheEulerexamples,thereisaconservedquantity,namelytheL1normofthesolution.Inonespacedimension,(3)takesonaparticularlysimpleformforwhichitiseasytoshowsolutionsbecomesingularin nitetimeforpointypotentialssuchasejxj.Thatis,theKuoperatorsplitsintoconvolutionwithaDiracmassplusconvolutionwithaboundedkernel.Thus,forasmoothsolutiononecanapplyamaximumprincipleargumenttoobtainanestimateoftheform(um)tCu2mDum(whereumisthemaximumvalueofu)whichimplies nitetimeblowupofthesolutionprovidedasuitablecontinuationtheoremholds.Thisargumentisdescribedinanonrigorousfashionin[15].BodnarandVelazquezconsidertheone-dimensionalproblemin[2]andprove nitetimeblowupbydirectcomparisonwithaBurgers-likedynamics.Inhigherspacedimensionsonedoesnotobtainsuchastraightforwardblowupresult.ThisisbecauseK,forn2,in(3)doesnothaveaDiracmass,insteaditssingularpartisoftheform1jxj.Asaconvolutionoperator,Kisincreasinglylesssingularly,as2thedimensionofspace,n,increases.NoteforexamplethattheNewtonianpotential,whichhastheformofcnjxj2ninRn,n3,introducesagainoftwoderivatives,asaconvolutionoperator.Indeed,ifKhasboundedsecondderivative,thereisno nitetimeblowup,sothetypeofkernelconsideredhereposesaninterestingproblemfornonlocalactivescalarequations.Anotherrelatedproblemofbiologicalrelevanceisthechemotaxismodelt+r(rc)=;c=;(4)whereisamassdensityofbacteriaandcisconcentrationofachemoattractant[3].Themodelisrelatedtothemuch-studiedKeller-Segelmodel[18]anditalsoarisesasanoverdampedversionoftheChandrasekharequationforthegravitationalequilibriumofisothermalstars[6].In(4)thelefthadsidehasthesamestructureas(1)wherethekernelKisnowtheNewtonianpotential,whichissigni cantlymoresingularthantheaggregationkernelsconsideredinthispaper.Finitetimesingularitiesfor(4)areknowntooccurevenwiththelineardi usionontherighthandside.Thepaper[3]showsthatt

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功