解直角三角形复习三边之间的关系a2+b2=c2(勾股定理);锐角之间的关系∠A+∠B=90º边角之间的关系(锐角三角函数)tanA=absinA=ac1、cosA=bcACBabc解直角三角形的依据在解直角三角形及应用时经常接触到的一些概念lhα(2)坡度tanα=hl基本概念(1)仰角和俯角视线铅垂线水平线视线仰角俯角(3)方位角30°45°BOA东西北南α为坡角1(2007旅顺)一个钢球沿坡角31°的斜坡向上滚动了5米,此时钢球距地面的高度是(单位:米)()A.5cos31°B.5sin31°C.5tan31°D.5cot31°2(2007滨州)梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A.sinA的值越大,梯子越陡B.cosA的值越大,梯子越陡C.tanA值越小,梯子越陡D.梯子陡的程度与∠A的三角函数值无关。3、在△ABC中,∠C=900,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若ABNCDM例题赏析例1如图,海岛A四周20海里周围内为暗礁区,一艘货轮由东向西航行,在B处见岛A在北偏西60˚方向,航行24海里到C处,见岛A在北偏西30˚方向,货轮继续向西航行,有无触礁的危险?ABDCNN130˚60˚1.(2007淄博)王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地多少距离?2.一艘轮船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?例2.例2.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:(1)坡角a和β;(2)坝底宽BC和斜坡CD的长(精确到0.1m)BADFEC6mαβi=1:3i=1:1.53m1、已知一段坡面上,铅直高度为,坡面长为,则坡度i=,坡角a为。2、一段坡面的坡角为600,则坡度i=。ACB1︰23、植树节,某班同学决定去坡度为1︰2的山坡上种树,要求株距(相邻两树间的水平距离)是6m,斜坡上相邻两树间的坡面距离为m.3√5例3.(2007年成都)如图,甲、乙两栋高楼的水平距离BD为90米,从甲楼顶部C点测得乙楼顶部A点的仰角α为30°,测得乙楼底部B点的俯角β为60°,求甲乙两栋高楼各有多高?(计算过程和结果都不取近似值。)例4.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴侵袭。近日,A城气象局测得沙尘暴中心在A城的正南方向240km的B处,以每小时12km的速度向北偏东30°方向移动,距沙尘暴中心150km的范围为受影响区域。(1)A城是否受到这次沙尘暴的影响,为什么?(2)若A城受这次沙尘暴的影响,那么遭受影响的时间有多长?EFABCM24030°如图,为了测量山坡的护坡石坝与地面的倾斜角α,把一根长为4.5m的竹竿AC斜靠在石坝旁,量出竹竿长1m处,它离地面的高度为0.6m,又量得竿顶与坝脚的距离BC=2.8m.这样∠α求就可以算出来了.请你算一算.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60o,沿山坡向上走到P处再测得点C的仰角为45o,已知OA=100米,山坡坡度i=1:2,且O,A,B在同一条直线上.求电视塔OC的高度以及此人所在位置P点的铅直高度.(测倾器高度忽略不计,结果保留根号形式)COABP山坡水平地面(第5题图)